by Victor Iannello, POSTED: SUNDAY, 12/19/2021
Despite many stories in the media repeating claims that historical WSPR data can be used to track MH370, there are many reasons why these claims are patently false. There is broad agreement among acknowledgeable researchers that have investigated these claims, and a handful of these researchers have documented their concerns. For instance, amateur radio enthusiast Hayden Haywood (VK7HH) has created a video explaining why, in simple terms, WSPR can't track airplanes. MH370 investigator Steve Kent published a paper that formally treats skywave propagation and scatter off airplanes, and concludes there is insufficient signal strength (by many orders of magnitude) for WSPR to detect aircraft over long distances. In fact, even WSPR creator Joe Taylor (K1JT), who won a Nobel prize in physics for his research on pulsars and gravity, told fellow MH370 Independent Group (IG) member Mike Exner, "I do not believe that historical data from the WSPR network can provide any information useful for aircraft tracking."
[...]
Assuming the skywave propagation loss was equal to the free-space propagation loss, the WSPR signals originating in Switzerland and forward scattered by MH370 over the Gulf of Thailand would be received in Australia with a strength of around -210 dBm. However, the direct radio waves that did not interact with the aircraft would be received with a strength of around -110 dBm. That means that the direct signal strength would be about (-110 – -210) = 100 db (10 orders of magnitude!) stronger than the scattered signal. Under these circumstances, the combined signal (direct plus forward scattered) would be absolutely indistinguishable from the direct signal, even if above the noise level (which it was not).
[...]
Yet it's claimed that there was a detectable deviation in the recorded (S/N) values between the Swiss and Australian stations that is indicative of forward scatter from MH370. To evaluate this claim, Mike Exner and Bobby Ulich produced the following graph which shows the (S/N) for all WSPR contacts between the Swiss (HB9CZF) and Australian (VK1CH) stations over an time interval of around 16 hours. The particular (red) spot deemed as "anomalous" clearly shows no greater deviation from the trend than any other spot. What is claimed to be "anomalous" is within the scatter range of the other points. The dynamic characteristic of the ionosphere is all that is needed to explain these deviations.
To further demonstrate that there is nothing anomalous about the spot at 17:16 UTC, Mike and Bobby produced the following graphs which show that the reported values of frequency and frequency drift at 17:16 UTC are in no way anomalous to the other values recorded on that day for HB9CZF-VK1CH WSPR contacts.
This article attempts to lay out in simple technical terms why WSPR data cannot be used to track aircraft over long distances, and certainly cannot be used to reconstruct the flight path of MH370. At long distances and at low transmission powers, the received signals from hypothetical aircraft scatter are simply too weak by many orders of magnitude. What is claimed to be discernable "anomalies" in signal strength attributable to forward scatter by aircraft are within the expected deviations in signal strength for long distance skywave propagation involving refraction off the ionosphere. Although aircraft scatter could be detected if the aircraft were close to either the transmitter or receiver and if the transmitted power were sufficiently strong, the detection of the aircraft requires signal processing to separate the Doppler-shifted scattered signal from the much stronger direct signal, and this data is not available in the WSPR database.