TABLE 2.—Vapor pressures at pyrheliometric stations on days when solar radiation intensities were measured. | Washin | gton, | D. C. | Mad | ison, V | Vis. | Line | oln, Ne | br. | Santa Fe, N. Mex. | | | | | |---|--|---|-------|---|--|-------|---------|---|--|--|--|--|--| | Date. | 8 a.m. | 8 p.m. | Date. | 8a.m. | 8 p.m. | Date. | 8 a.m. | 8 pm | Date. | 8 a.m. | Sp.m. | | | | 2
3
6
8
9
15
16
20
23
24 | 15. 11
9. 47
7. 23
12. 68
15. 11
15. 11
16. 79
16. 20 | mm. 9. 47 7. 04 10. 59 12. 68 10. 21 9. 47 14. 10 14. 60 16. 20 16. 31 19. 47 | | 14. 10
9. 83
6. 27
9. 47
10. 21
10. 21
11. 38
13. 13
15. 11 | mm. 9.14 12.24 14.10 6.76 11.81 9.47 9.14 11.38 14.60 13.61 10.21 7.57 | | | mm.
9.14
13.13
8.48
10.59
17.37
11.81 | 1918. July 9 11 12 13 16 17 18 19 222 23 24 25 29 30 | mm. 9.14 7.29 8.48 8.48 9.14 6.27 9.14 9.14 9.14 9.14 9.14 9.14 9.18 9.18 9.18 | mm.
7.04
7.29
6.50
7.04
7.29
4.75
9.14
10.97
7.57
7.57
6.27
7.57
6.27
9.47 | | | Table 3.—Daily totals and departures of solar and sky radiation during July, 1918. [Gram-calories per square centimeter of horizontal surface.] | | Da | ily tota | ls. | Dep | artures
normal. | from | Excess or deficiency since first of month. | | | | | |----------------------|--|---|--|--|---|---|--|--|--|--|--| | Day of month. | Wash.
ing-
ton. | Madi-
son. | Lin-
coln. | Wash-
ing-
ton. | Madi-
son. | Lin-
coln. | Wash-
ing-
ton. | Madi-
son. | Lin-
coln. | | | | July 1 | 671.
690
730
643
622
306
608
436
393
558
451 | 626
645
322
538
666
673
673
737
354
674 | 611.
767
742
681
310
474
322
165
708
347
524 | c il.
181
222
136
116
-199
103
- 68
-110
65
- 51 | 611.
80
100
-222
- 5
124
133
134
200
-182 | c11.
187
162
101
-270
-106
-257
-413
131
-229
-51 | 677.
181
403
539
655
456
559
491
381
446
395 | c2l.
80
180
- 42
- 47
77
210
344
544
362
502 | 677.
187
349
450
180
74
— 183
— 596
— 465
— 694
— 745 | | | | 11 | 500
376
338
678
653
600
262
586
354
557 | 654
655
407
283
85
385
492
685
596
616 | 696
494
420
379
395
387
151
711
695
710 | - 1
-125
-162
179
154
102
-235
89
-142
62 | 121
124
-123
-245
-442
-139
- 29
167
81
104 | 122
- 79
-172
-192
-175
-181
-415
147
133
150 | 394
269
107
286
440
542
307
396
254
316 | 623
747
624
379
- 63
-202
-231
- 64
17 | - 623
- 702
- 874
-1,066
-1,241
-1,422
-1,837
-1,690
-1,557
-1,407 | | | | Decade d | !
lepartu: |
 e | l . |
 |
 | !
: | — 79 | -381 | - 662 | | | | 21 | 618
567
538
485
449
497
538
285
386
231
129 | 597
528
271
253
529
407
637
300
575
679
645 | 634
427
452
709
564
653
676
558
737
636
562 | 124
74
46
- 6
- 41
8
50
-202
-100
-254
-355 | 88
22
-232
-247
32
- 87
146
-188
90
197
166 | 76
-129
-102
157
14
105
130
14
195
96
24 | 440
514
560
554
513
521
571
369
269
15
—340 | 209
231
 | -1,331
-1,460
-1,562
-1,405
-1,391
-1,286
-1,156
-1,142
-2,947
-851
-827 | | | | Decade o | lepartu | !
re | | | 1 | !
• • • • • • • | —656 | _ 13 | + 580 | | | | Excess or deficience | y since | first of | year | • | {gr.
pe | -cal
r cent | -932
-1.2 | +786
+1.0 | + 672
+ 0.7 | | | ## ABSORPTION AND RADIATION OF THE SOLAR ATMOSPHERE By S. HIRAYAMA. [Reprinted from Science Abstracts, Sect. A, June 29, 1918, §632.] Computations of the transmission and radiation of the solar atmosphere by Schuster's method, using the recent measurements at the Smithsonian Astrophysical Observatory, are compared with the results given by Biscoe from the same material, but neglecting the effect of radiation of the solar atmosphere. The tables of residuals indicate that the observations are better represented than in Biscoe's table. The coefficient of transmission increases gradually with the wave length. The radiation due to the solar atmosphere is also tabulated; it is about one-third of the whole radiation for short wave lengths, and approaches to one-half as the wave length increases. Assuming the effective temperature of the sun to be 6,000° A., the temperature of the photosphere is calculated to be about 7,040° A., and that of the absorbing layer about 5,210° A.—C. P. B[utler]. ## INTERNAL TEMPERATURES OF THE SUN.1 By A. VÉRONNET. [Reprinted from Science Abstracts, Sect. A, June 29, 1918, §633.] An investigation is made of the law of densities operating on a gaseous mass of similar nature and at the temperature of the sun, 6,000° A. The variation found would be about 22° per kilometer, indicating that at a certain depth a pressure of 11,000 atmospheres, and a maximum temperature of 60,000° A. would combine to confer on any gaseous masses the potentiality of explosive expansion which when released might produce the surface phenomena with which we are familiar.— C. P. B[utler]. ## HALO PHENOMENA OBSERVED DURING JULY, 1918. By WILLIS RAY GREGG, Meteorologist. [Dated: Aerological Division, Weather Bureau, Aug. 28, 1918.] During recent years several brief studies of halos in relation to weather have appeared in the Monthly Weather Review, and, in addition, there have been published from time to time detailed descriptions, with sketches, of occurrences of the more unusual forms. There has been, however, no systematic observation and recording of halos in such manner as to render them readily susceptible of summarization and intercomparison, without considerable labor on the part of the investigator. Moreover, comparatively few exact readings of angular measurements have been made, and, as pointed out by Besson, these measurements are of the utmost importance, particularly in the case of the circumhorizontal arc, tangent arcs of the 22° halo, and other rare forms. The recent establishment of several aerological stations, well distributed with respect to latitude, longitude, and average cyclonic tracks, makes feasible the inauguration of a statistical study of these optical phenomena, not only with a view to determining the relative frequency of the various forms at different latitudes and by months and seasons and their relation to pressure distribution and precipitation, but also with the hope of adding to our knowledge concerning their angular measurements, distances from the sun or moon, etc. These stations are equipped with theodolites and smoked glasses and are located in country districts, where conditions for observation of this kind are at their best; moreover, the work of obtaining free air records is necessarily conducted in the open, thereby making it easy for observers to keep on the lookout for such phenomena. Accord- ¹ Proc. Math. Phys. Soc., Tokyo, February, 1918, 9:236-240. Comptes Rendus, Paris, Jan. 21, 1918, 166:109-111. See "Selected Bibliography" at end of paper on "Further Study of Halos in Relation to Weather," by Howard H. Martin, Monthly Weather Review, Mar., 1918, 46:120. Different Forms of Halos and their Observation, Monthly Weather Review July 1914, 42:436-446. ingly, suitable blank forms have been issued to these stations and to certain others, the observers at which have expressed a desire to cooperate, with instructions to forward each month, beginning with July, 1918, a report of the number of halos and associated forms observed, together with such measurements as were made; cloud, pressure, and precipitation notes, and sketches of any remarkable appearances. It is purposed to publish in each number of the MONTHLY WEATHER REVIEW a brief but sufficiently complete summary of the halos observed during that month. After a long series of such observations has been published, a more comprehensive summary and study of halos will be undertaken than has heretofore been possible. The monthly summary for July, 1918, is given in t e following table: TABLE 1.—Halo phenomena observed during July, 1918. | | Į | | | | | | | | | Time of— | | | | Theodolite readings. | | | | | |---|-------------------|----------------------|-------------------------|----------------------|----------------------|---|--------------------------|--|------------|---|----------------------|--|--|----------------------|---|-------------|---|-------------------------------------| | Station. | Alti-
tude. | | ti-
de. | Lo
tu | ngi-
de. | Date. | For | m observe | eđ. | Beginnir | ng. | Ending. | Time. | Radius
inside. | Radius
outside. | | Dis-
tance
from
sun or
moon. | Alti-
tude of
sun or
moon. | | Broken Arrow, Okla.* | m.
233
191 | 36
39 | ,
02
06 | 95
84 | 49
30 | 5
3
21 | Sol
Sol | ar halo, 22
ar halo, 22
ar halo, 22 | : | 1:30 p. 1
11:40 a. 1
10:30 a. 1 | n. 1 | 2:55 p. m
2:00 p. m
1:15 a. m | . | | | | • | 71. | | Dayton, Ohio | 274 | 39 | 46 | 84 | 10 | 26
3
4
5 | Sol
Sol
Sol
Sol | ar halo, 22
ar halo, 22
ar halo, 22
ar halo, 22 | • • • • | 6:45 a. 1
11:15 a. 1
2:35 p. 1
10:15 a. 1 | m. l
m. l
m. l | 8:10 a. m
1:50 a. m
2:50 p. m
0:40 a. m | | 1 | 1 | 1 | t | | | Drexel, Nebr.* Ellendale N. Dak.* Groesbeck, Tex.* Leesburg, Ga.* Madison, Wis. | 396
444
141 | 41
45
31
31 | 20
59
30 | 96
98
96
84 | 16
34
28
14 | None.
None.
None.
None.
None. | | ar halo, 22 | | 11:45 a. 1 | | | | -1 | | . | | | | Leesourg, Ga.* | 85
297 | 43 | 47 | 89 | 9 23 | None.
6
12
13
17
19
10
4
18 | Sol
Sol
Sol | ar halo, 22
ar halo, 22
ar halo, 22
ar halo, 22 | | 11:10 a. 1
1:45 p. 1
9:00 a. 1
2:25 p. 1 | m.
m. | 1:00 p.m
2:00 p.m
9:30 a.m | | - | | | | | | Nashville, TennRoyal Center, Ind.* | 186
227 | 36
40 | 10
53 | 86
86 | 86 47
86 29 | | Solar I
Solar I | ar halo, 22
ar halo, 22
ar halo, 22
ar halo, 22 | 220 | 3:30 p. m.
4:15 p. m.
7:10 a. m
11:15 a. m | m.
m.
m. | 9:00 p.m
5:00 p.m
9:30 a.m | | | | | | | | | | | | | | | | i | | louds. | | | | Precipitation. | | | | | | Station. | | | Colors.** | | • | Degree of
brightness. | | Amount. | | Kind. Dire | | - (| on pressure. | Last previous ended. | | nded. | First subsequent began. | | | Broken Arrow, Okla.* | 1 | 8 {, | 0. V | · Y } | | Dim
Bright | | 10 Ci. | | St | nw Stat | | g D. N. a., 3
nary 4:40 p. m., | | m., 30th | s | 35 a. m., | 7th. | | Dayton, Ohlo | | . 16 | R. O.
R. O.
G. V. | | } | Bright
Dim
Dim | | 8
7
9 | Ci.
Ci. | St
St | w
nw
nw
w | | Stationary
Stationary
Stationary
Falling. | | 8:10 p. m., 16th 8:35 a. m., 25th 4:15 p. m., 30th 4:15 p. m., 30th 1:135 a. m., 18th | | 3:43 p. m., 22d.
1:41 p. m., 26th.
4:48 p. m., 5th.
4:48 p. m., 5th.
4:48 p. m., 5th. | | | Drexel, Nebr.*
Ellendale, N. Dak.*
Groesbeek, Tex.*
Leesburg, Ga.* | . None | 1 . | | | | Dim | | 6 | či. | St | w | - | | | | | 50 a. m., | 22d. | | Madison, Wis | .} • | 6 | 0 | | | Bright | | 13 . | i St. | Cu | w
w
nw | Stati | onary | D. N. a., 5th. | | . l | 40 p. m., | | | | 1 | 3 | R | | | Dim
Bright | | 15 4 | Cu | St
Cu | nw
w
s | Stati | onary | 7:00 p. | m., 9th. | 2 | :12 p. m., | , 14th. | | Nashville, Tenn | . 1 | 9 | R
R | • • • • | | Brilliant
Brilliant
Dim | | , 2
, 6 | Ci.
Ci. | St | nw
nw
nw
nw | Stati
Stati | onary
onary
onary | 6;42 p.
10;45 a. | m., 16th
m., 16th
m., 8th | 2 | 0:33 a.m.
0:33 a.m.
:20 p.m., | . 23d. | | Royal Center, Ind.* | | | R. E | 3
3 | | Dim
Bright | | 2
9
6 | l Ci. | St | w | Risir | ng | 10:50 a. | . m., 2d.
p., 16th. | 1 | 0:55 a. m.
:35 p. m., | ., 5th. | ^{*} Aerological station. ^{**} Beginning with part nearest sun or moon: R, red; O, orange, etc.