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Abstract: Progressive collapse is a failure mode of great concern for tall building subjected to fire,
internal explosions, external blast, impact, earthquake and foundation movements, and is also typical
of building demolitions. The collapse of World Trade Center towers is the most infamous paradigm.
After reviewing the mechanics of collapse of these towers, the motion during the crushing of one floor
(or group of floors) and its energetics are formulated, and on that basis a one-dimensional model
of progressive collapse is developed. Rather than using classical homogenization, it is found more
effective to characterize the continuum by en energetically equivalent snap-through. The collapse,
in which two phases—crush-down followed by crush-up—must be distinguished, is described by a
nonlinear second-order differential equation for the propagation of the crushing front in each phase.
Expressions for consistent energy potentials are formulated and an exact analytical solution of a
special case is given. It is shown that progressive collapse will be triggered if the total (internal)
energy loss during the crushing of one story (equal to the energy dissipated by the complete crushing
and compaction of one story, minus the loss of gravity potential during the crushing of that story)
exceeds the kinetic energy impacted to that story. If this criterion is satisfied, there is no way to
deny the inevitability of progressive collapse driven by gravity alone (regardless of the load capacity
of the floor). The main parameter, hard to predict theoretically, is the energy dissipation per unit
height, and further parameters are the compaction ratio of a crushed story, and the fraction of mass
shedding outside the building perimeter. Using inverse analysis, one could identify these parameters
from a precise record of the motion of floors of a collapsing building. The videos of WTC do not allow
obtaining such a record, due to a shroud of dust and smoke. It is proposed to obtain such records
by monitoring the precise time history of displacements in different modes of building demolitions.
The monitoring could be accomplished by real-time telemetry from sacrificial accelerometers, or
by high-speed optical camera. The resulting information on energy absorption capability would be
valuable for the rating of various structural systems and for inferring their collapse mode.

Introduction

The destruction of the World Trade Center (WTC) on 9/11/01 was not only the biggest mass
murder in the U.S. history but also a big surprise for the structural engineering profession,
perhaps the biggest since the collapse of Tacoma Bridge in 1940. No experienced structural
engineer watching the attack expected the towers of WTC to collapse. No skyscraper has ever
before collapsed due to fire. The fact that the towers of WTC did, invites deep examination.

In this paper,3 attention will be focused on the progressive collapse, triggered in WTC by
fire and previously experienced in many tall buildings as a result of earthquake or explosions
(including terrorist attack). A simplified one-dimensional analytical solution of the collapse
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front propagation will be presented. It will be shown how this solution can be used to determine
the energy absorption capability of individual stories if the motion history is precisely recorded.
Because of the shroud of dust and smoke, these histories cannot be identified from the videos
of the collapsing WTC towers, and so nothing can be learned in this regard from that collapse.
However, monitoring of tall building demolitions, which represent a kind of progressive collapse,
could provide such histories, and using different demolition modes can provide further valuable
data. Development of a simple theory amenable to inverse analysis of these histories is the key.
It would permit extracting valuable information on the energy absorption capability of various
types of structural systems, and is, therefore, the main objective of this paper.

Many disasters other than WTC attest to the danger of progressive collapse—e.g., the
collapse of Ronan Point apartments in U.K., 1968 (Levy and Salvadori 1992), where kitchen
gas explosion on the 18th floor sent a 25-story stack of rooms to the ground; the bombing
of Murrah Federal Building in Oklahoma City, 1995, where the air blast pressure sufficed to
take out only a few lower floors, while the upper floors failed by progressive collapse; the 2000
Commonwealth Ave. tower in Boston, 1971, New World Hotel in Singapore; precast concrete
apartment buildings in Armenian, Turkish, Mexico City and other earthquake; etc. A number
of ancient towers failed in this way, too—e.g., the Civic Center of Pavia in 1989 (Binda et
al. 1992); the cathedral in Goch, Germany; the Campanile in Venice in 1902; etc. (Heinle
and Leonhardt 1989), where the trigger was centuries-long stress redistribution due to drying
shrinkage and creep (Ferretti and Bažant 2006).

Review of Causes of WTC Collapse

Severe though the structural damage due to aircraft impacts was, it was only local. Without
stripping of much of steel insulation during impact, the subsequent fire could not have led
to overall collapse (Bažant and Zhou 2002, NIST 2005). As generally accepted by structural
engineering and structural mechanics experts (though not by some laymen and fanatics seeking
to detect a conspiracy), the failure scenario, broadly proposed by Bažant (2001), and Bažant and
Zhou (2002), on the basis of simplified analysis, and supported by very realistic, meticulous and
illuminating computer simulations and exhaustive investigations by S. Shyam Sunder’s team
at the National Institute of Standards and Technology (NIST, 2005), may be summarized as
follows:

1. About 60% of the 60 columns of the impacted face of framed-tube (and about 13% of
the total of 287 columns) were severed, and many more were significantly deflected. This
caused stress redistribution, which significantly increased the load of some columns, near
the load capacity for some of them.

2. Fire insulation was stripped during aircraft impact by flying debris (without that, the
towers would likely have survived). In consequence, many structural steel members heated
up to 600◦C (NIST 2005) (the structural steel used loses about 20% of its yield strength
already at 300◦C, NIST 2005, and exhibits significant visco-plasticity, or creep, above
450◦, especially at high stresses that developed; see e.g. Cottrell 1964, p. 299; the press
reports right after 9/11, indicating temperature in excess of 800◦C, turned out to be
groundless, but Bažant and and Zhou’s analysis did not depend on that).

3. Differential thermal expansion, combined with heat-induced viscoplastic deformation,
caused the floor trusses to sag. The sagging trusses pulled the perimeter columns in-
ward (by about 1 m, NIST 2005). The bowing of columns served as a huge imperfection
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inducing multi-story buckling. The lateral deflections of some columns due to aircraft
impact and differential thermal expansion also decreased buckling strength.

4. The combination of six effects—a) overload of some columns due to initial stress redis-
tribution, b) lowering of yield limit and creep, c)lateral deflections of many columns due
to sagging floor trusses, d) weakened lateral support due to reduced in-plane stiffness of
sagging floors, e) multi-story buckling of some columns (for which the critical load is an
order of magnitude less than it is for one-story buckling), and f) local plastic buckling
of heated column webs—finally led to buckling of columns (Fig. 1b). As a result, the
upper part of tower fell, with little resistance, through at least one floor height, impacting
the lower part of tower. This triggered progressive collapse because the kinetic energy of
the falling upper part far exceeded the energy that could be absorbed by limited plastic
deformations and fracturing in the lower part of tower.

Before disappearing from view, the upper part of the South tower was seen to tilt signif-
icantly (and of the North tower mildly). Some wondered why the tilting (Fig. 1d) did not
continue, so that the upper part would pivot about its base like a falling tree (see Fig. 4 of
Bažant and Zhou 2002). However, such toppling to the side was impossible because the hori-
zontal reaction to the rate of angular momentum of the upper part would have exceeded the
elasto-plastic shear resistance of the story approximately 10.3× (Bažant and Zhou 2002).

The kinetic energy of the top part of tower impacting the floor below was found to be
about 8.4× larger than the plastic energy absorption capability of the underlying story, and
considerably higher than that if fracturing would be taken into account (Bažant and Zhou
2002). This fact, along with the fact that, during the progressive collapse of underlying floors
(Figs. 1d and 2), the kinetic energy increases rapidly (roughly in proportion to the square of the
number of stories traversed), sufficed to Bažant and Zhou (2002) to conclude that the tower was
doomed once the top part of tower has dropped through the height of one story (or even 0.5 m).
It was also observed that this conclusion made any calculations of the dynamics of progressive
collapse after the first single-story drop of upper part superfluous. The relative smallness of
energy absorption capability compared to the kinetic energy also sufficed to explain, without
any further calculations, why the collapse duration could not have been much longer (say, twice
as long or more) than the duration of a free fall from the tower top.

Therefore, no further analysis has been necessary to prove that the WTC towers had to fall
the way they did. However, a theory describing the progressive collapse dynamics beyond the
initial trigger, with WTC as a paradigm, could nevertheless be very useful for other purposes,
especially for learning from demolitions. Formulating this theory is the main objective of what
follows.

Motion of Crushing Columns of One Story and Energy Dissipation

When the upper floor crashes into the lower one, with a layer of rubble between them, the
initial height h of the story is reduced to λh, with λ denoting the compaction ratio (in finite-
strain theory, λ is called the stretch). After that, the load can increase without bounds. In a
one-dimensional model pursued here, one may use the estimate:

λ = (1− κout)V1/V0 (1)

where V0 = initial volume of the tower, V1 ≈ volume of the rubble into which the whole tower
mass has been compacted, and κout = correction representing mainly the fraction of the rubble
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that has been ejected during collapse outside the perimeter of the tower and thus does not resist
compaction. The rubble that has not been ejected during collapse but was pushed outside the
tower perimeter only after landing on the heap on the ground should not be counted in κout.
The volume of the rubble found outside the footprint of the tower, which can be measured
by surveying the rubble heap on the ground after the collapse, is an upper bound on V1, but
probably a rather high bound.

Let u denote the vertical displacement of the top floor relative to the floor below (Fig. 3,
4), and F (u) be the corresponding vertical load that all the columns of the floor transmit. To
analyze progressive collapse, the complete load-displacement diagram F (u) must be known (Fig.
3, 4 top left). It begins by elastic shortening and, after the peak load, F steeply declines with
u due to plastic buckling, combined with fracturing (for columns heated above approximately
450◦C, the buckling is viscoplastic). For single column buckling, the inelastic deformation
localizes into three plastic (or softening) hinges (see Figs. 2b,c and 5b in Bažant and Zhou 2002).
For multi-story buckling, the load-deflection diagram has a similar shape but the ordinates are
reduced roughly by an order of magnitude; in that case, the framed tube wall is likely to buckle
as a plate, which requires four hinges to form on some columns lines and three on others (see
Fig. 2c of Bažant and Zhou). Such a buckling mode is suggested by photographs of flying large
fragments of the framed-tube wall, which show rows of what looks like broken-off plastic hinges.

To avoid calculating the elastic wave propagation along the collapsing columns (which must
have a negligible effect), assume that the mass of columns is lumped, half and half, into the
mass of the upper and lower floors, while the columns are massless.

Deceleration and Acceleration During the Crushing of One Story. The two in-
tersections of the horizontal line F = gm(z) with the curve F (u) seen in Fig. 3 and 4a (top)
are equilibrium states (there is also a third equilibrium state at intersection with the vertical
line of rehardening upon contact). But any other state on this curve is a transient dynamic
state, in which the difference from the line F = gm(z) represents the inertia force that must
be generated by acceleration or deceleration of the block of tower mass m(z) above level z of
the top floor of the story.

Before impact by upper part, the columns are in equilibrium, i.e. F (u0) = gm(z), where
u0 = initial elastic shortening of columns under weight gm(z) (about 0.0003h). At impact,
the initial condition for subsequent motion is velocity v0 = u̇(u0) ≈ vi = velocity of the
impacting block of upper part of tower. Precisely, from balance of linear momentum upon
impact, v = m(z)/[m(z) + mF ], but this is only slightly less than vi because mF ¿ m(z) (mF

is the mass of the impacted upper floor).
When F (u) 6= gm(z), the difference F (u)−gm(z) causes deceleration of mass mz if positive

(∆Fd in Fig. 3) and acceleration if negative (∆Fa in Fig. 3). The equation of motion of
mass m(z) during the crushing of one story (or one group of stories, in the case of multi-story
buckling) reads as follows:

ü = g − F (u)/m(z) (2)

where z = constant = coordinate of the top floor of the story, and superior dots denote deriva-
tives with respect to time t. So, after impact, the column resistance causes mass m(z) to
decelerate, but only until point uc at which the load-deflection diagram intersects the line
F = gm(z) (Figs. 3, 4a). After that, mass m(z) accelerates until the end of column crushing.

If the complete function F (u) is known, then calculation of the motion of the upper part
of tower from (2) is easy (the main difficulty in practice is, of course, calculation of function).
Examples of accurately computed velocity v = u̇ from Eq. (2) for various load-displacement
diagrams graphically defined in the top row of Fig. 4a are shown in the second and third rows
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of Fig. 4a,b,c.
Energy Criterion of Progressive Collapse Trigger. The energy loss of the columns up

to displacement u is

Φ(u) =
∫ u

u0

[F (u′)− gm(z)] du′ = W (u)− gm(z)u (3)

W (u) =
∫ u

u0

F (u′) du′ (4)

where z = constant = column top coordinate, W (u) = energy dissipated by the columns = area
under the load-displacement diagram (Fig. 3) and −gm(z)u = gravitational potential change
causing an increment of kinetic energy of mass m(z). Note that, since the possibility of unload-
ing (Fig. 4c top) can be dismissed, W (u) is path-independent and thus can be regarded, from
the thermodynamic viewpoint, as the internal energy, or free energy, for very fast (adiabatic),
or very slow (isothermal) deformations, and thus Φ(u) represents the potential energy loss. If
F (u) < gm(z) for all u, Φ(u) continuously decreases. If not, then Φ(u) first increases and then
decreases during the collapse of each story. Clearly, collapse will get arrested if and only if the
kinetic energy does not suffice for reaching the interval of accelerated motion, i.e., the interval
of decreasing Φ(u), i.e., (Fig. 4 right column). So, the crushing of columns within one story
will get arrested before completion (Fig. 4c) if and only if

K < Wc (5)

where Wc = Φ(uc) = W (uc) − gm(z)uc = net energy loss up to uc during the crushing of one
story, and K = kinetic energy of the impacting mass m(z). This is the criterion of preventing
progressive collapse to begin (Fig. 4c). Its violation triggers progressive collapse.

Graphically, this criterion means that K must be smaller then the area under the load-
deflection diagram lying above the horizontal line F = gm(z) (Fig. 3 and 4 right column). If
this condition is violated, the next story will again suffer an impact and the collapse process
can be repeated.

The next story will be impacted with higher kinetic energy if and only if

Wg > Wp (6)

where Wg = gm(z)uf = loss of gravity when the upper part of tower is moved down by distance
uf , uf = (1 − λ)h = final displacement at full compaction, and Wp = W (uf ) =

∫ uf

0 F (u)du =
area under the complete load-displacement curve F (u) (Fig. 3).

For the case of WTC towers, it was estimated by Bažant and Zhou (2002) that K ≈
8.4Wp À Wp for the story where progressive collapse initiated. Wg was greater than Wp by
an order of magnitude, which guaranteed acceleration of collapse from one story to the next.

Some investigators have been under the mistaken impression that collapse cannot occur if
the weight mg of the upper part is less than the load capacity F0 of the floor, which led them to
postulate various strange ideas (such as ”fracture wave”, or presence of explosives). However,
the criterion in (5) makes it clear that this impression is erroneous. If this criterion is violated,
there is (regardless of F0) no way to deny the inevitability of progressive collapse driven only
by gravity.

Options for Transition to Global Continuum Model. One option would be the tra-
ditional homogenization of heterogenous material distribution within the tower. This standard
approach would, however, produce a stress-strain relation with strain softening, which leads
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to an ill-posed dynamic problem, whose mathematical solution exists but is physically wrong
(Bažant and Belytchko 1985, Bažant and Cedolin 2003, sec. 13.1). The problem can be reg-
ularized by introducing a nonlocal formulation (Bažant and Jirásek 2004, Bažant and Cedolin
2003, chapter 13) with a characteristic length equal to the story height h (such regularization
was forgotten in the ”fracture wave” theory, proposed for modeling WTC collapse). But the
nonlocal approach is relatively complex. Because of the clearly defined periodic microstructure
of stories in the tower, there is another, more effective, option: non-softening energetically
equivalent characterization of discrete elements—the individual stories. This option, which
is more effective, is pursued next (it is analogous to the crack band model for softening dis-
tributed damage, Bažant and Cedolin 2003, Bažant and Jirásek, 2004, and more broadly to van
der Waals theory for gas-liquid phase changes).

Energetically Equivalent Mean Crushing Force. For the purpose of continuum smear-
ing of a tower with many stories, the actual load-displacement diagram F (z) (curve OABC in
Fig. 2a) can be replaced by a simple energetically equivalent diagram, represented by the hor-
izontal line F = Fc. Here Fc is the mean crushing force (or resistance) at level z, such that
the dissipated energy per story, represented by the rectangular area under the horizontal line
F = Fc, be equal to the total area Wp under the actual load-displacement curve OABC; i.e.,

Fc =
Wp

uf

=
1

uf

∫ uf

0
F (u) du (7)

Such energy-equivalent replacement (which avoids unstable snap-through, Bažant and Cedolin
2003, and is in physics called the Maxwell line), has the property that it does not affect the
overall change of velocity v of the collapsing story from the beginning to the end of column
crushing (Fig. 4), i.e, from u = 0 to u = uf . (as long as Fc is not large enough to arrest the
downward motion). Fc may also be regarded as the mean energy dissipated per unit height of
the tower, which has the physical dimension of force.

One-Dimensional Continuum Model for Crushing Front Propagation

Detailed finite element analysis simulating plasticity and break-ups of all column and beams,
and the flight and collisions of broken pieces, would be extremely difficult, as well as unsuited
for extracting the basic general trends. Thus it appears reasonable to make four simplifying
hypotheses: (i) The only displacements are vertical and only the mean of vertical displacement
over the whole floor needs to be considered. (ii) Energy is dissipated only at the crushing front
(this implies that the blocks in Fig. 2 may be treated rigid, i.e., deformations of the blocks
away from the crushing front may be neglected). (iii) The relation of resisting normal force F
transmitted by columns of each floor to the relative displacement u between two adjacent floors
obeys a known load-displacement diagram (Fig. 4, terminating with a specified compaction
ratio λ (which must be adjusted to take into account lateral shedding of a certain known
fraction of rubble outside the tower perimeter). (iv) The stories are so numerous, and the
collapse front traverses so many stories, that a continuum smearing (i.e., homogenization) is
sufficiently accurate.

The one-dimensionally idealized progress of collapse of a tall building (of initial height H)
is idealized in Fig. 2, where ζ, η = coordinates measured from the initial and current tower top,
respectively; z(t), y(t) = coordinates ζ and η of the crushing front at time t (ζ is the Lagrangian
coordinate of material points in the sense of finite strain theory, while y is measured from the
moving top of building). The initial location of the first floor crashing into the one below is at
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ζ = z = z0 = y0. The resisting force F and compaction ratio λ are known functions of z. A
and C label the lower and upper undisturbed parts of tower, and B the zone of crushed stories
compacted from initial thickness s0 to the current thickness

s(t) =
∫ z(t)

ζ=z0

λ(ζ)dζ (8)

When µ = const., s(t) = λ(z(t)− z0) where z(t)− z0 is the distance that the crushing front has
traversed through the tower at time t. The velocity of the upper part of tower is

v(t) = [1− λ(z)]ż(t) (9)

First it needs to be decided whether crushed zone B will propagate down or up through the
tower. The equation of motion of zone B requires that

F1 − F2 = λs0[µg − (µv)˙] (10)

This expression must be positive if the zone B is falling slower than a free fall. This situation
is reasonable to expect and is confirmed by the solution to be given. Therefore always F2 <
F1. So, neither upward, nor two-sided simultaneous, propagation of crushing front is possible
(intermittently two-sided propagation, much slower up and down, would be found possible if
the inevitable randomness of tower properties and crushing front were taken into account; but
stochastic analysis is beyond the scope of this paper).

The phase of downward propagation of the front will be called Phase I (Fig. 4b) or crush-
down phase. After the lower crushing front hits the ground, the upper crushing front of the
compacted zone can begin propagating into the falling upper part of tower (Fig. 4d). This will
be called Phase II, or crush-up phase (it could also be called the ‘demolition phase’, because
demolitions of buildings are usually effected by explosive cutter charges placed at the bottom).

Let µ = µ(ζ) = initial mass density at coordinate ζ = continuously smeared mass of undis-
turbed tower per unit height. The mass density of the compacted zone B is mu(z)/λ(z) (> µ).
However, a correction must be made for the fraction κout of the mass that is being lost at the
crushing front, ejected into the air outside the perimeter of the tower. During crash-down, the
ejected mass alters the inertia and weight of the moving compacted part B, which requires a
correction to m(z), while during crash-up no correction is needed because part B is not moving.
Accordingly, we adjust the definition of the inertial mass of the tower above level z in the
crush-down phase as follows:

For z > z0: m(z) = m(z0) +
∫ z

z0

(1− κout)µ(ζ)dζ, m(z0) =
∫ z0

0
µ(ζ)dζ (11)

No adjustment is needed for the crush-up phase because block B of compacted rubble does not
move with C but is is stationary.

Differential Equations of Progressive Collapse or Demolition

The differential equations for z(t) and y(t) can be obtained from dynamic free body diagrams
(Fig. 4h). In the crush-down phase, the compacted zone B and the upper part A of tower move
together as one rigid body with increasing mass and combined momentum m(1 − λ)ż. The
negative of the derivative of the momentum is the upward inertia force (ż < 0). The vertical
forces due to gravity are mg downward and Fc upward. The condition of dynamic equilibrium
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according to d’Alembert principle yields the following differential equation for compaction front
propagation in the crush-down phase I of progressive collapse:

d

dt

{
m(z)[1− λ(z)]

dz

dt

}
−m(z)g = −Fc(z) (crush-down) (12)

For the special case of λ = Fc = κout = 0, Eq. (12) reduces to (zż)˙ = z (the numerical solution
for this special case was presented by Kausel, 2001).

The initial conditions for the crush-down phase I are z = z0 and ż = 0. Downward propa-
gation will start if only if

m(z0)g > Fc(z0) (13)

In the crush-up phase, the crushing front at η = y is moving up with velocity λ(y)ẏ, and
so the downward momentum of part C is m(y)[1− λ(y)]ẏ. Downward acceleration of part C is
opposed by upward inertia force

FC
i = −{m(y)[1− λ(y)]ẏ}˙ (14)

In contrast to the crush-down phase, the compacted zone B of growing mass is not moving
with part C but is now stationary (Fig. 4d), and this makes a difference. During every time
increment dt, the momentum

dp = [µ(y)(ẏdt)][1− λ(y)]ẏ (15)

of the infinitesimal slice dy = ẏdt at the crushing front gets reduced to 0 (ẏ < 0). So, the
stationary part B is subjected to downward inertia force (Fig. 4g):

FB
i = dp/dt = µ(y)[1− λ(y)]ẏ2 (16)

(this is a similar phenomenon as, in the kinetic theory of gases, the pressure of gas molecules
hitting a wall). As a reaction, the same force acts upward from part B onto part C. Adding
also the force of gravity (and noting that ẏ < 0, ÿ < 0), the dynamic equilibrium of part C as
a free body requires that FB

i − FC
i − m(y)g + Fc = 0. This yields the following differential

equation for compaction front propagation in the crush-up phase of progressive collapse:

m(y)

{
d

dt

[
[1− λ(y)]

dy

dt

]
+ g

}
= Fc(y) (crush-up) (17)

For the special case of λ = Fc = 0 and constant µ (for which m = µy), Eq. (17) reduces to
ÿ = −g, which is the equation of free fall of a fixed mass.

For the special case when only λ is constant while Fc(y) and µ(y) vary, Eq. (17) reduces to

ÿ = −g̃(y), g̃(y) = [g − Fc(y)/m(y)]/(1− λ) (18)

This is equivalent to a fall under variable gravity acceleration g̃(y). Obviously, the collapse
will accelerate (for λ 6= 0) only as long as g̃ > 0, i.e., if condition (13) is satisfied. Since
limy→0 m(y) = 0, this condition will always become violated before collapse terminates (unless
Fc = 0), and so the collapse must decelerate at the end.

For Fc > 0, the tower can in fact never collapse totally, i.e, y = 0 cannot be attained. To
prove it, consider the opposite, i.e. y → 0. Then ÿ = C/y where C = Fc/µ(1− λ) = constant
> 0; hence (ẏ2)˙ = 2ẏÿ = 2Cẏ/y, the integration of which gives ẏ2 = 2C ln(y/C1) where C1 is a
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constant. The last equation cannot be satisfied for y → 0 because the left-hand side ≥ 0 while
the right-hand side → −∞; Q.E.D.

As the rubble height approaches its final value, i.e. for limẏ→0 = yf (> 0), the values of
m,λ, Fc are nearly constant, and so ÿ = (Fc/m − g)/(1 − λ) = C0 = constant (> 0, which is
again condition (13). Hence, ÿ = C0, which gives y(t) − yf = C0(t − tf )

2. So, if Fc > 0, the
collapse history y(t) will terminate as a parabola at some finite height y1 and finite time tf .

As a more detailed simulation of collapse, it would be possible to use for each floor Eq.
(2) for motion within each floor, or introduce into Eq. (12) and (17) a function Fc(z) varying
within each story height as shown by the actual response curves in Figs. 4 and 5. This would
give a fluctuating response with oscillations superposed on the same mean trend of z(t) or y(t)
as for smooth Fc(z). Very small time steps would be needed in this case.

In the case of some kinds of explosion or vertical impact, the present formulation might
be used with an initial condition consisting of a certain finite initial velocity v0 caused by the
explosion. In that case, the foregoing inequality is not necessary for the downward propagation
to begin (although the propagation will get arrested if this inequality is violated for sufficiently
many floors). The fact that Fc is smaller in the heated story than in the cold stories may be
taken into account by reducing Fc(z) within a certain interval z ∈ (z0, z1). The initial conditions
for the crush-up phase II are y = y0 = z0 and a velocity ẏ equal to the terminal velocity of the
crush-down phase. For a demolition, triggered at the base of building, the initial conditions are
y = y0 and ẏ = 0, while Fc = 0 for the y value corresponding to the ground story height.

Dimensionless Formulation

To convert the formulation to a dimensionless form, note that the solution can be considered to
be a function of 2 coordinates, t and z (or y), and 6 independent parameters, H, z0, g, Fc, µ(z), λ(z),
and involves involves 3 independent dimensions, the mass, length and time. According to the
Vashy-Buckingham theorem, the solution must depend on only 7 + 2 − 3 = 6 dimensionless
independent parameters, of which 2 are dimensionless time and spatial coordinates. They may
be chosen as follows:

τ = t
√

g/H, Z = z/H or Y = y/H, Z0 = z0/H = y0/H

F̄c(Z) = Fc(z)/Mg, m̄(Z) = m(z)/M, λ = λ(Z) (19)

where M = m(H) = total mass of the tower. After transformation to these variables, the
differential equations of the problem, Eqs. (12) and (17), take the following dimensionless
forms:

d

dτ

{
[1− λ(Z)] m̄(Z)

dZ

dτ

}
− m̄(Z) = −F̄c(Z) (crush-down) (20)

m̄(Y )

{
d

dτ

[
[1− λ(Y )]

dY

dτ

]
+ 1

}
= F̄c(Y ) (crush-up) (21)

The dimensionless form of the initial conditions is obvious.
In the special case of constant µ and λ, we have m̄(Z) = Z, m̄(Y ) = Y , and the foregoing

dimensionless differential equations take the form:

(1− λ)(ZZ̈ + Ż2)− Z = −F̄c(Z) (crush-down) (22)

(1− λ)Y Ÿ + Y = F̄c(Y ) (crush-up) (23)
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Numerical Solution and Parametric Study

Eq. (12) can be easily converted to a system of 2 first-order differential equations of the form
ż = x and ẋ = F (x, z), with prescribed values of z and x as the initial conditions. This system
can be easily solved by some efficient standard numerical algorithm, such as the Runge-Kutta
method. The same is true for Eq. (17).

The diagrams in Fig. 6 present the collapse histories computed for the approximate parame-
ters of WTC (heavy solid curves) and for modified values of these parameters. For comparison,
the curve of free fall from the tower top is shown in each diagram as the leftmost curve. The
transition from the crush-down phase I to the crush-up phase II is marked in each diagram
(except one) by a horizontal line. The parameter values used for calculation are listed in each
diagram. There were chosen as the typical values for the WTC and their variations. W̄f denotes
the mean of a linearly varying crushing energy Wf . Since the first story to collapse was heated,
the value of Fc within the interval of z corresponding to the height of that story was reduced to
one half. Fig. 7 shows separately the histories of tower top coordinate for the crush-up phase
alone, which is the case of demolition. Four characteristics of the plots of numerical results in
Fig. 6 and 7 should be noticed:

• Varying the building characteristics, particularly the crushing energy Wf per story, makes
a large enough difference in response to be easily detectable by the monitoring of collapse.

• The effect of crushing energy Wf on the rate of progressive collapse is much higher than
the effect of compaction ratio λ or specific mass µ. This means that these two parameters
need not be estimated very accurately in advance of inverse analysis.

• For the structural system such as WTC, the energy required to arrest the collapse after
a drop of only one or several stories (Fig. 6e) would have to be an order of magnitude
higher than the energy dissipation capacity of the structural system used in WTC .

• For the typical WTC characteristics, the collapse takes about 10.8 s (Fig. 6 top left),
which is not much longer (precisely only 17% longer) than the duration of free fall in
vacuum from tower top to the ground, which is 9.21 s (the duration of 10.8 s is within
the range of Bažant and Zhou’s, 2002, crude estimate). For all of the wide range of
parameter values considered in Fig. 6, the collapse takes less than about the double of
free fall duration.

The last two points confirm Bažant and Zhou’s (2002) observations about collapse duration
made on the basis of initial kinetic energy and without any calculation of collapse history.

What Can We Learn?—Proposal for Monitoring Demolitions

We have seen that the main unknown in predicting cohesive collapse is the mean energy dis-
sipation Wf per story. The variable µ(z) is known from the design, and the contraction ratio
λ(z) can be reasonably estimated from Eq. (1) based on observing the rubble heap after col-
lapse. But a theoretical or computational prediction of Fc is extremely difficult and fraught
with uncertainty.

Eqs. (12) and (17) show that Fc(z) can be evaluated from the monitoring of motion history
z(t) and y(t), provided that µ(z) and λ(z) are known. Such information can, in theory, be
extracted from a high-speed camera record of the collapse. Approximate information could
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have been extracted from a regular video of collapse if the moving part of the towers of WTC
were not shrouded in a cloud of dust and smoke.

However, valuable information on the energy dissipation capability of various types of struc-
tural systems could be extracted by monitoring demolitions. During the initial period of de-
molition, the history of motion of building top could be determined from a video of collapse.
After the whole building disappears in dust cloud, various remote sensing techniques could be
used. For example, one could follow through the dust cloud the motion of sacrificial radio
transmitters. Or one could install sacrificial accelerometers monitored by real-time telemetry.
From the acceleration record, the y(t)-history could be integrated.

Therefore, monitoring of demolitions is proposed as a means of learning about the energy
absorption capability of various structural systems.

Usefulness of Varying Demolition Mode. Ronan Point apartments, the Oklahoma
City bombing, etc., demonstrate that only a vertical slice of building may undergo progressive
collapse, while the remainder of building stands. Such a collapse is truly a three-dimensional
problem, much harder to analyze, but some cases might allow adapting the present model as
an approximation. For example, in Ronan Point apartments, energy was dissipated not only by
vertical crushing of stories, but also by shearing successive floor slabs from their attachments
to columns on the side of the collapsing stack of rooms. The present model seems usable if the
energy dissipated by shearing is added to the crushing energy Fc, and if the rotational kinetic
energy of floor slabs whose fall is hindered on one side by column attachments is included in the
kinetic energy. Such a generalization of the present model could be calibrated by comparing
data from two different demolition modes: 1) the usual mode, in which the building is made
to collapse symmetrically, and 2) another mode in which first only a vertical slice of building
(e.g., one stack of rooms) is made to collapse by asymmetrically placed cutter charges. Many
variants of this kind may be worth studying.

Complex Three-Dimensional Situations. Situations such as stepped tall buildings call
for three-dimensional analysis. Large-scale finite-strain computer simulation tracking the con-
tacts of all the pieces of crushing floors and columns could in principle do the job but would
be extraordinarily tedious to program and computationally demanding. The present analysis
would be useful for calibrating such a computer program.

Massive Structures. Progressive collapse is not out of question even for the massive load-
bearing concrete cores of the tallest recent skyscrapers, as well as for tall bridge piers and
tall towers of suspension or cable-stayed bridges (that such a collapse mode is a possibility is
documented, e.g., by the collapses of Campanile in Venice and Civic Center tower in Pavia).
Although progressive collapse of the modern massive piers and towers would be much harder
to initiate, a terrorist attack of sufficient magnitude might not be inconceivable. Once a local
damage causes a sufficient downward movement of the superior part of structure, it cannot be
stopped. The question is, for instance, whether it might be within the means of a terrorist
to cause fracturing and ejection of large enough block of concrete. In this regard, it should
be noted that the size effect in compression fracture (Cusatis and Bažant 2006) would assist a
terrorist.

Alternative Formulations, Extensions, Ramifications

Alternative Derivation. A more elementary way to derive the differential equation for the
crush-up phase is to calculate first the normal force N(η) (positive if tensile) in cross section
of any coordinate η ∈ (0, y) (Fig. 4h). The downward velocity of block C is v = [1 − λ(y)]ẏ,
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and its acceleration is opposed by inertia force [1 − λ(y)]ÿm(η). The downward gravity force
on this block is gm(η). From dynamic equilibrium, the normal force N(η) (positive if tensile),
acting at the lower face η of this block, is:

N(η) = −[1− λ(y)] ÿ m(η) + g m(η) (24)

For the crushing front, η = y, this must be equal to the crushing force, i.e., N(y) = −Fc(y).
This immediately verifies Eq. 17.

For the crush-down phase, the same expression holds for the cross section force N(ζ). How-
ever, in the dynamic equilibrium condition of block C, one must add upward inertia force µ(z)ż2

needed to accelerate from 0 to ż the mass that is being added to block C per unit time. This
then verifies Eq. 12.

Potential and Kinetic Energies. An energy based formulation is useful for various ap-
proximations, numerical algorithms and bounds. It is slightly complicated by the variation of
mass of the moving block and the dissipation of energy by crushing force Fc.

Consider first the crush-down phase. Since unloading of columns does not occur, a potential
Π can be defined as the gravitational potential minus the work of Fc. Its rate is:

dΠ(t)

dt
= {Fc[z(t)]− gm[z(t)]}v(t) (25)

Due to variation of mass of the moving block, its kinetic energy m(z)v2/2 in increased by
the kinetic energy due to accelerating every infinitesimal slice dz = żdt of mass m′(z)(żdt) to
velocity v. This means that kinetic energy increment 1

2
[m′(z)(żdt)]v2 is added during every

time increment dt. So, the rate of added kinetic energy is 1
2
m′(z)żv2, and the overall rate of

change of kinetic energy K is

dK(t)

dt
=

d

dt

{
1

2
m[z(t)]v2(t)

}
+

1

2
m′(z)v2(t)

dz(t)

dt
(26)

where m′(z) = dm(z)/dz, which differs from µ(z) only at locations where κout has an effect.
Conservation of energy requires the sum of the last two energy rates to vanish. This condition
yields:

m(z)vv̇ + 1
2
m′(z)(z)v2ż + 1

2
m′(z)(z)żv2 + [Fc(z)− gm(z)]v = 0 (27)

Dividing this equation by mass velocity v and setting v = (1 − λ)ż, we obtain Eq. (17). This
verifies correctness of the foregoing energy expressions for the crush-down phase.

For the crush-up phase, the rate of energy potential is

dΠ(t)

dt
= {gm[y(t)]− Fc[y(t)]}v(t) (28)

In formulating the kinetic energy, the difference from crush-down is that the mass of each
infinitesimal slice dy = ẏdt is during dt decelerated from velocity v to 0, removed from the
moving block C, and added to the stationary block B. By analogous reasoning, one gets for the
kinetic energy rate the expression:

dK(t)

dt
=

d

dt

{
1

2
m[y(t)]v2(t)

}
− 1

2
µ[y(t)]v2(t)

dy(t)

dt
(29)

where µ(y) = m′(y). Energy conservation dictates that the sum of the last two energy rate
expressions must vanish, and so

m(y)vv̇ + 1
2
µ(y)v2ẏ − 1

2
µ(y)ẏv2 + [gm(z)− Fc(z)]v = 0 (30)
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After division by v = (1 − λ)ẏ, Eq. (12) for the crush-up phase is recovered. This agreement
verifies the correctness of the foregoing energy rate expressions.

Lagrange equations of motion or Hamilton’s principle (Flügge 1962) are often the best way to
analyze complex dynamic systems. So why hasn’t this approach been followed?—Because these
equations are not valid for systems with variable mass. Although various special extensions to
such systems have been formulated, they are complicated and depend on the particular type of
system (e.g., Pesce 2003).

Solution by Quadratures for Constant λ and µ, and κout = 0. In this case, which
may serve as a test case for finite element program, Eq. (12) for the crush-down phase takes
the form:

ff̈ + ḟ 2 −Qf = −P or (fḟ)˙ = Qf − P (31)

Here Q = 1/(1−λ), P (t) = Fc/µ(1−λ)gH, Fc = Fc[z(t)), f = f(t) = z(t)/H; and the superior

dots now denote derivatives with respect to dimensionless time τ = t
√

g/H. Let ϕ = f 2/2.

Then ϕ̇ = fḟ and

ϕ̈ = Q
√

2ϕ− P (32)

(ϕ̇2)˙ = 2ϕ̇ϕ̈ = 2(Q
√

2ϕ− P )ϕ̇ (33)
∫

d(ϕ̇2) =
∫

2(Q
√

2ϕ− P )dϕ (34)

ϕ̇ =
(

4
3
Q
√

2ϕ3/2 − 2Pϕ + C
)1/2

(35)

τ − τ0 =
∫ ϕ(τ)

ϕ(τ0)

(
4
3
Q
√

2ϕ3/2 − 2Pϕ + C
)−1/2

dϕ (36)

The second equation was obtained by multiplying the first by 2ϕ̇, and Eq. 35 was integrated
by separation of variables; C and τ0 are integration constants defined by the initial conditions.
The last equation describes the collapse history parametrically; for any chosen ϕ, it yields the

time as t = z
√

H/g or y
√

H/g where z or y = H
√

2ϕ.

Eq. (12) for the crush-up phase with constant µ and λ takes the form:

ff̈ + Qf = P (37)

Multiplying this equation by ḟ/f and noting that ḟ f̈ = 1
2
(ḟ 2)˙ and ḟ/f = (ln f)˙, one may get

the solution as follows:

(ḟ 2)˙ = 2(P ḟ/f −Qḟ) (38)

ḟ 2 = 2(P ln f −Qf) + C (39)

df = [2(P ln f −Qf) + C]1/2dτ (40)

τ − τ0 =
∫ f(τ)

f(τ0)
[2(P ln f −Qf) + C]−1/2dτ (41)

Effect of Elastic Waves. Note that Eqs. (12) and (17) do not represent elastic stiffness
and thus do not model wave propagation. Elastic waves are ignored because the maximum
shortening of story height for which the columns remain elastic is only about 0.4 mm. If elastic
response were incorporated, a much faster elastic wave, with step wavefront equal to F0, would
be found to emanate from the crushing front when each floor is hit, propagate down the tower,
reflect from the ground, etc. But the damage to the tower would be almost nil, the subsequent

13



propagation of the crushing front would be almost unaffected by the precursor elastic waves,
and the solution would get more complicated.

Analogous problem—Crushing of Foam. One-dimensional crushing of foam by impact
can be solved from the present differential equation for the crush-down phase. To this end, the
top part of tower needs to be replaced by a rigid impacting object of mass equivalent to m(z0),
whose initial velocity is assigned as the initial condition at t = 0. Compared to inertia forces,
normally one can neglect gravity (i.e., set g = 0).

Implications and Conclusions

1. If the total (internal) energy loss during the crushing of one story (representing the energy
dissipated by the complete crushing and compaction of one story, minus the loss of gravity
potential during the crushing of that story), exceeds the kinetic energy impacted to that
story, collapse will continue to the next story. This is the criterion of progressive collapse
trigger (Eq. 5). If it is satisfied, there is no way to deny the inevitability of progressive
collapse driven by gravity alone (regardless of by how much the combined strength of
columns of one floor may exceed the weight of the part of tower above that floor).

2. One-dimensional continuum idealization of progressive collapse is amenable to a simple
analytical solution which brings to light the salient properties of the collapse process. The
key idea is not to use classical homogenization, leading to a softening stress-strain relation,
but to characterize the discrete elements—the stories—by an energetically equivalent
snapthrough.

3. Distinction must be made between crush-down and crush-up phases, for which the crush-
ing front propagates into the stationary stories below, or into the moving stories above,
respectively. This leads to a second-order nonlinear differential equation for propagation
of the crushing front in the crush-down phase, or in the subsequent crush-up phase.

4. The mode and duration of collapse of WTC towers are consistent with the derived model,
but nothing more can be learned because the motion was obstructed from view by a cloud
of dust and smoke.

5. The present idealized model allows simple inverse analysis which can yield the crushing
energy per story and other properties of the structure from a precisely recorded history of
motion during collapse. From the crushing energy, one can infer the collapse mode, e.g.,
single-story or multi-story buckling of columns.

6. It is proposed to monitor the precise time history of displacements in building demolitions—
for example by radio telemetry from sacrificial accelerometers, or high-speed optical
camera—and to engineer different modes of collapse to be monitored. This should pro-
vide invaluable information on energy absorption capability of various structural systems,
needed for assessing the effects of explosions, impacts, earthquake, and terrorist acts.
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