
 

Statistical Appendix 
 
In this appendix, we describe our statistical methods in more detail. Section 1 describes our approach to 
calculating population weights. Section 2 describes our approach to adjusting our population prevalence 
estimate for the sensitivity and specificity properties of the LFA test kit we are using.  Finally, Section 3 
describes our approach to incorporating three separate sources of uncertainty in our prevalence estimates: 
sampling variability, error in the sensitivity estimate, and error in the specificity estimate. 
 
Population weighting 
In all but the unadjusted prevalence results, we reweight our sample to reflect the sex, race/ethnicity, and 
zip code of residence distribution of Santa Clara County. We derive these weights from the 2018 
American Community Survey, from which we derived an estimate of the population of each zip code, as 
well as the race/ethnicity and sex distribution of county residents. We applied the county-wide sex 
distribution to each race/ethnicity group in each zip code to estimate the number of people within each 
zip-race-sex group. For example, zip code 95037 has a total of 51,652 residents, of which 50.6% are 
female, 49.7% are white, 7.7% are Asian, 33.0% are Hispanic, and 9.5% are other. We applied the female 
proportion to each race category in the zip code to obtain the number of residents in each zip-race-sex 
group. 
 
Let 𝐸𝑝𝑜𝑝!"#,%&'(,)(* be the number of people in each zip-race-sex cell produced by this calculation. Let 
𝑆𝑚𝑝𝑆𝑧!"#,%&'(,)(* be the number of people in our sample population in each cell.  We need to up-weight 
cells that are underrepresented in our population relative to their frequency in Santa Clara County, and 
down-weight cells that are overrepresented.  We can accomplish this by weighting proportional to the 
following ratio: 

𝜃(!"#,%&'(,)(* =
𝐸𝑝𝑜𝑝!"#,%&'(,)(*
𝑆𝑚𝑝𝑆𝑧!"#,%&'(,)(*

 

 
We renormalize so that the sum of our weights equals the size of the SCC sample, 𝑁.  Define 

𝑆 ≡ , 𝜃(!"#,%&'(,)(*
!"#,%&'(,)(*

. 

Our final sample weights are: 

𝜃!"#,%&'(,)(* =
𝑁
𝑆
𝜃(!"#,%&'(,)(* 

 
This is identical to the formula we present in the Methods: 	

𝑤𝑒𝑖𝑔ℎ𝑡!)% =

𝑁!)%'
𝑁+,+&-.

𝑁!)%/
𝑁+,+&-/

 

 
Adjusting the prevalence estimate for test kit accuracy 
Our main goal is to derive an estimate of the population prevalence of specific COVID-19 antibody 
seroconversion in Santa Clara County.  However, we observe a noisy signal of antibody presence because 
the test kit we use has both type 1 and type 2 errors. In this section, we describe our approach to adjusting 
for these errors. To spare notation, we do not incorporate the sample weighting process we describe 



 

above. Introducing sample weighting would complicate our notation, but would not change the approach. 
The analytic weights were used in the results shown in Table 2. 
 
Let 𝜋 = 𝑃(𝐶𝑂𝑉𝐼𝐷 +) represent the population prevalence of antibodies to COVID-19, and let 𝑞 =
𝑃(𝑇𝐸𝑆𝑇 +) be the proportion of participants who test positive in our sample (this latter quantity 
measured using our sample weights). Note: we consider 𝑇𝐸𝑆𝑇 + as any band on the test kit indicating the 
presence of IgG or IgM antibodies or both. 
 
Let 𝑟 = 𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +) be the sensitivity of the test and let 𝑠 = 𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 −) be the 
specificity of the test.  Let 𝑧 = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +) be the positive predictive value of the test, and 
𝑦 = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −) be the (one minus) the negative predictive value of the test. 
 
By Bayes rule,  

𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +) =
𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +)

𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +) + 𝑃(𝑇𝐸𝑆𝑇 + |	𝐶𝑂𝑉𝐼𝐷 −)𝑃(𝐶𝑂𝑉𝐼𝐷 −)
 

 
and 

𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −) =
𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +)

𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 +)𝑃(𝐶𝑂𝑉𝐼𝐷 +) + 𝑃(𝑇𝐸𝑆𝑇 − |	𝐶𝑂𝑉𝐼𝐷 −)𝑃(𝐶𝑂𝑉𝐼𝐷 −)
. 

 
Rewriting these in our notation, we have: 

𝑧 =
𝑟𝜋

𝑟𝜋 + (1 − 𝑠)(1 − 𝜋)
, and 

𝑦 =
(1 − 𝑟)𝜋

(1 − 𝑟)𝜋 + 𝑠(1 − 𝜋)
. 

 
By the definition of conditional probability, we also have: 

𝑃(𝐶𝑂𝑉𝐼𝐷 +) = 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 +)𝑃(𝑇𝐸𝑆𝑇 +) + 𝑃(𝐶𝑂𝑉𝐼𝐷 + |	𝑇𝐸𝑆𝑇 −)𝑃(𝑇𝐸𝑆𝑇 −), 
 
Or in our notation: 

𝜋 = 𝑧𝑞 + 𝑦(1 − 𝑞). 
 
If we plug in our expressions for 𝑦 and 𝑧 and simplify, we have a quadratic expression in 𝜋. 

1 =
𝑟𝑞

𝑟𝜋 + (1 − 𝑠)(1 − 𝜋)
+

(1 − 𝑞)(1 − 𝑟)
(1 − 𝑟)𝜋 + 𝑠(1 − 𝜋)

. 

 
We solve for 𝜋 as a function of the sample prevalence, sensitivity, and specificity: 

𝜋 =
𝑞 + 𝑠 − 1
𝑟 + 𝑠 − 1

. 

 
There is one important caveat to this formula: it only holds as long as (one minus) the specificity of the 
test is higher than the sample prevalence. If it is lower, all the observed positives in the sample could be 
due to false-positive test results, and we cannot exclude zero prevalence as a possibility. As long as the 
specificity is high relative to the sample prevalence, this expression allows us to recover population 
prevalence from sample prevalence, despite using a noisy test. 



 

Delta method approach to variance measurement 
In this section, we derive an estimate of the variance of our population prevalence estimate that accounts 
for the error in the test kit sensitivity and specificity numbers, as well as sampling variation. We retain our 
notation from the previous section, and start with the formula we derived that relates all our variables of 
interest: 

𝜋 =
𝑞 + 𝑠 − 1
𝑟 + 𝑠 − 1

. 

 
We use a first order Taylor series approximation to derive the delta method approximation for 𝑉𝑎𝑟(𝜋). 
 

𝜋 ≈
𝜕𝜋
𝜕𝑞
N
(1!,%!,)!)

(𝑞 − 𝑞3) +
𝜕𝜋
𝜕𝑟
N
(1!,%!,)!)

(𝑟 − 𝑟3) +
𝜕𝜋
𝜕𝑠
N
(1!,%!,)!)

(𝑠 − 𝑠3). 

 
The three relevant derivatives are as follows: 

𝜕𝜋
𝜕𝑞
N
(1!,%!,)!)

=
1

𝑟3 + 𝑠3 − 1
, 

𝜕𝜋
𝜕𝑟
N
(1!,%!,)!)

=
𝑞3 + 𝑠3 − 1
(𝑟3 + 𝑠3 − 1)4

, and 

𝜕𝜋
𝜕𝑠
N
(1!,%!,)!)

=
𝑟3 − 𝑞3

(𝑟3 + 𝑠3 − 1)4
. 

Since 𝑞, 𝑠, and 𝑟 are all derived from independent samples: 

𝑉𝑎𝑟(𝜋) ≈ O
1

𝑟3 + 𝑠3 − 1
P
4
𝑉𝑎𝑟(𝑞) + O

𝑞3 + 𝑠3 − 1
(𝑟3 + 𝑠3 − 1)4

P
4
𝑉𝑎𝑟(𝑟) + O

𝑟3 − 𝑞3
(𝑟3 + 𝑠3 − 1)4

P
4
𝑉𝑎𝑟(𝑠). 

Thus, the delta method estimate for 𝑉𝑎𝑟(𝜋) is a weighted sum of three variance terms: sampling 
variability, sampling error in sensitivity, and sampling error is specificity.  
 
In the main text, we explore three alternative assumptions about the sampling error in sensitivity and 
specificity.  For each of these scenarios, we estimate the variance in sensitivity and specificity by the 
standard formulas for a binomial outcome: 𝑉𝑎𝑟(𝑟) = 𝑟̂(1 − 𝑟̂) and 𝑉𝑎𝑟(𝑠) = 𝑠̂(1 − 𝑠̂), where 𝑟̂ and 𝑠̂ 
are the estimated values of sensitivity and specificity that pertain to each scenario. 

• In the first scenario, we estimate these quantities based upon the numbers provided by the 
manufacturer of the test kits. For sensitivity, the manufacturer reported 78 positive test readings 
for 85 samples (from Chinese blood samples) known to have specific IgM antibodies to the 
receptor-binding domain (RBD) spike on the SARS-nCOV2 virus.  They reported 75 positive test 
readings for 75 of the samples with specific IgG antibodies to the same RBD spike. We adopt a 
conservative estimate of sensitivity equal to 𝑟̂ = 56

67
≈ 91.8%. The manufacturer reports 

specificity based on an experiment using their kit on a sample of 371 known negative blood 
samples collected from before the epidemic, and 369 were tested negative. This implies a 
specificity of 𝑠̂ = 89:

85;
≈ 99.5%.	 

• In the second scenario, we estimate these quantities based on tests run locally at Stanford 
University.  We identified serum from 37 patients who had RT-PCR-confirmed cases of COVID-
19 and either IgG or IgM on a locally-developed ELISA assay; of these, 25 tested positive with 
the test kit, implying a sensitivity of 𝑟̂ = 47

85
≈ 67.6%.  We also identify serum from 30 patients 

drawn from before the COVID-19 epidemic, and all 30 tested negative, implying a specificity of 



 

𝑠̂ = 83
83
= 100%. In this case, since the standard formula implies 𝑉𝑎𝑟(𝑠) = 0, we instead estimate 

𝑉𝑎𝑟(𝑠) from a simple transformation of the width of the Clopper-Pearson exact confidence 
interval. 

• In the third scenario, we estimate these quantities by combining the manufacturer tests with our 
local tests in a simple additive fashion.  Under these assumptions, the sensitivity estimate is 𝑟̂ =
;38
;44

≈ 84.4% and the specificity estimate Is 𝑠̂ = 8::
<3;

≈ 99.5%. 

 
To provide one concrete example, we have the following values under the first scenario: 
𝑞3 = 0.028  𝑣𝑎𝑟(𝑞3) = 0.027 
𝑟3 = 0.918  𝑣𝑎𝑟(𝑟3) = 0.076 
𝑠3 = 0.995  𝑣𝑎𝑟(𝑠3) = 0.005 
 

\ ;
%!=)!>;

]
4
= 1.202 

O
𝑞3 + 𝑠3 − 1
(𝑟3 + 𝑠3 − 1)4

P
4
= 7.423 × 10>< 

O
𝑟3 − 𝑞3

(𝑟3 + 𝑠3 − 1)4
P
4
= 1.143 

Combining all of those values, we get 𝑉𝑎𝑟(𝜋) = 0.039, and 𝑆𝐸(𝜋) = 0.0034 
We use this procedure throughout. 


