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1  Introduction

1.1  Project Aim
The aim of the project is to develop and test a computational method for detecting ironic sarcasm in

English text. The classifier algorithm will, given a sentence of English text, classify it as being sarcastic or

not.

1.2  Project Objectives

• Research  related  work  to  identify  features  and  methodologies  that  can  potentially  differentiate

between sarcastic and non-sarcastic text

• Design a classifier algorithm using identified sarcastic features and knowledge gained from analysis

of related work

• Produce classifier algorithm

• Evaluate the classifier algorithm by comparing its classifications of sentences from a corpus against

those done by humans

• Produce a report of the project, including future possibilities and improvements

1.3  Minimum Requirements

• A classifier algorithm which given English text input will classify a sentence as being sarcastic or

not  

• Analysis of textual characteristics that correlate with sarcasm

• Comparison of different approaches

• Evaluation of results from a corpus.

1.3.1  Possible Extensions

• Evaluation of results from a large, diverse corpus, to give more reliable results.

• Investigate if the addition of emoticons, laughter acronyms and onomatopoeic expressions denoting

laughter as features improve the accuracy of my classifier

• A classifier algorithm which given English text input will classify a sentence as being sarcastic or as

another rhetorical mode, such as litotes

1



1.4  Deliverables

• A classifier algorithm capable of identifying English sentences that are likely to be sarcastic.

• A corpus of sarcastic and non-sarcastic sentences.

1.5  Research Methods

• Google/Yahoo

• Google Scholar

• Library/Text Books

• Course Materials

1.6  Project Life Cycle
I will use the iterative waterfall model as the basis of my project life cycle. The iterative waterfall

model is an evolution of the lamented waterfall model, improving it to make it less prone to causing project

failure.  The iterative waterfall model does this by planning for the life cycle to continually go back on itself

to allow for incremental changes to be made, accounting for the fact that projects frequently change over

their life cycles due to changing requirements or unforeseen difficulties that require redesigns to circumvent.

Since my project will likely require redesigns given the somewhat unknown aspect I face going into this

project, an iterative based model that plans for additional redesign time is somewhat essential. 

The model I will follow is as follows:
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1.7  Project Schedule
My schedule will follow the rough outline depicted in the project life cycle diagram above. Time will

be factored into my schedule to accommodate me spending time redesigning my sarcasm classifier, and also

to allow for overrun as a contingency. A Gantt chart representing this can be seen in the appendices for

reference, and the project milestones are below:

1.7.1  Milestones

• Complete research and analysis of related work

• Complete Design of Sarcasm Classifier

◦ Complete Design of Pattern Extraction

◦ Complete Design of Pattern Matching

◦ Complete Design of Punctuation Features

• Complete Coding and Testing

• Complete Evaluation

• Reflect on Project and Finish Write up
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2  Background Reading

2.1  Introduction
Sarcasm is a nuanced part of language, often difficult for people to pick up on if it isn't particularly

obvious. Sarcasm is typically expressed verbally through the use of heavy tonal stress, and certain gestural

clues such as rolling of the eyes. These tonal and gestural clues are obviously not available for expressing

sarcasm in text, making its detection reliant upon other factors. There is currently no accepted solution to

detecting sarcasm in written text, or whether it can actually be dependably detected at all, which is the basis

of this project.

2.1.1  Sarcasm

Dictionary.com (Dictionary.com, 2013) provides definitions of sarcasm from two different sources,

the Collins English Dictionary and the Random House Dictionary. The Random House Dictionary defines

sarcasm as “a harsh or bitter derision or irony” or “a sharply ironical taunt; sneering or cutting remark” . The

Collins English Dictionary defines it as “mocking, contemptuous, or ironic language intended to convey

insult or scorn”. Another definition of sarcasm, by Merriam-Webster (Merriam-Webster, 2013), is “a mode of

satirical wit depending for its effect on bitter,  caustic,  and often ironic language that is usually directed

against an individual”.

As can be seen from the definitions above, and as noted by the sarcasm society (Sarcasm Society,

2013), sarcasm and irony are closely intertwined; it can even be stated that sarcasm is a form of irony. Verbal

irony is purposefully stating the opposite to what is meant, such as “great” to mean bad (Dictionary.com,

2013). Sarcasm can be described as an ironic statement used to mock or insult, separating it from irony in

that irony is not used to mock or insult. This particular type of ironic sarcasm is what my project will be

focused upon classifying: a remark intended to insult by giving the opposite connotation.

2.2  Background to The Problem

2.2.1  Knowledge in NLP

NLP systems, both speech and text based, are separated from typical data processing systems by

their use of knowledge of language (Jurafsky and Martin, 2009). The knowledge required for these systems

is quite extensive, and is required to properly analyse and design systems around the complexities of natural

language.

Knowledge in phonetics and phonology is required for understanding human speech. Phonetics and

phonology encompasses the knowledge of linguistic sounds (Jurafsky and Martin, 2009). This covers the

way words are pronounced, phonemes, prosody, and knowledge about pronunciation variation. Phonemes are

the smallest speech units that differentiate meaning; different languages have different phonemes, due to the
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wide variance in languages. Prosody is the term that describes lexical stress, rhythm, intonation and tone.

Variation in pronunciation comes in two forms: lexical variation and allophonic variation. Lexical variation

is typically sociolinguistic variation, but it  also includes ambiguity in words such as “bass”. Allophonic

variation is contextual pronunciation.

Morphology is a required knowledge to understand the variations of words, such as contractions and

pluralisation (Jurafsky and Martin, 2009). The knowledge of morphology allows a NLP system to determine

how words can be broken down into “meaning elements”,  components of a word with meaning.  Some

examples of meaning elements are the 's' at the end of a word denoting a plural, or the 'un' at the beginning of

a word denoting a negative.

Structural knowledge, or syntactical knowledge, enables a NLP system to understand how to order

and group words for them to make sense (Jurafsky and Martin, 2009). This is required to enable the system

to understand that although the words in a sentence may all be correct, they will not be understood unless put

in the correct order.

Semantics  is  the  study of  meaning,  allowing  a  system with  this  knowledge  to  understand  the

meaning of words. This particular application of semantics is known as lexical semantics, which is used in

tandem with compositional semantics to understand that the meaning of a sentence can be composed from

the meaning of  its  parts.  The  technical  name used to  describe the meanings of  a  sentence is  utterance

semantics.  This  knowledge  is  important  when  understanding  how  the  meaning  of  words  relate  to  the

syntactic structure, such as with the word “by”; the word “by” can be used to denote a temporal relationship

or as a description of an agent (Jurafsky and Martin, 2009). 

Similar to semantics, pragmatics is the study of how language is used to achieve goals. Knowledge

in this field is utilised by NLP systems to comprehend the differences between how a sentence is phrased to

give meaning, also known as a speech act. Examples of different speech acts are utterances phrased as a

question, statement, or request. 

Discourse is the study of linguistic units larger than a single utterance, such as if a question is asked

which references a previous utterance. A simple example would be the phrase “like what?”, which requires

knowledge of a previous utterance. This is known as conference resolution. 

Each  of  these  is  required  by both  humans,  and  NLP systems,  to  engage  in  complex  language

behaviour (Jurafsky and Martin, 2009). However, a large problem in NLP is resolving ambiguity at one or

more of these levels.

2.2.2  Ambiguity in NLP

Most tasks in NLP can be viewed as resolving ambiguity in one or more of these knowledge fields

(Jurafsky and Martin). As the knowledge described in the previous section is in essence mandatory to process

utterances within NLP systems, ambiguity in one or more of these fields frequently occurs. Methods have
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been made to counter this ambiguity however, such as Part-Of-Speech (POS) tags. 

POS tags help to resolve issues with words that can have several meanings, such as “duck”, by

applying a tag to the word denoting it as a verb or as a noun. This however can lead to ambiguity in itself

when actually applying these tags; if given an untagged sentence, it is not always clear which of the available

tags for a specific word is the correct tag. This is known as POS ambiguity. POS tagging does not completely

solve the ambiguity about words though, certain words have several meanings while only having a single

POS  tag,  such  as  “crane”.  This  is  known  as  lexical  ambiguity,  and  is  combated  by  word  sense

disambiguation.

Syntactic  ambiguity is  where  a  sentence can have more  than  one structure,  namely how words

connect together. This problem is addressed by probabilistic parsing, that selects the most probable structure

for that sentence. Probabilistic parsing, being statistical, does however make mistakes when disambiguating

particularly obscure sentences.

Several other types of ambiguity exist that cause problems in NLP. Referential ambiguity is where an

expression has several referents without a clear indicator of who is the subject of the expression. Discourse

ambiguity is where there is one connective, but several rhetorical relations. Speech act ambiguity is where an

utterance does not have a clear speech act (Jurafsky and Martin, 2009).

A key task in NLP is disambiguating these in context, and several different models and approaches

are available to help complete this task. 

2.2.3  Symbolic vs. Statistical

There  is  a  divide  in  NLP between  the  symbolic/rule-based  approach,  known as  the  Rationalist

approach, and the statistical approach, known as the Empiricist approach. The symbolic approach focuses on

creating rules that cover the grammatically correct sentences in a language. This side argues that a corpus

cannot be useful to linguists, as they describe the actual use of language, not what is actually correct. This is

known  as  modelling  performance  rather  than  competence.  Further  arguments  made  by  the  symbolic

approach is that a corpus is finite, and the probability of a sentence cannot describe its grammaticality. The

argument that a corpus is finite is correct, but this argument was made before the internet fully came into its

own; it is now possible to gather a corpus of over a trillion sentences, which greatly strengthens the statistical

side of NLP. Any corpus however is subject to Zipf's law, meaning that there will always be a large number

of words that occur infrequently, and a small number that occur very frequently.

The statistical approach is based upon the probability of sentences and words; Empiricists argue that

people differ in grammatical judgements, and so acceptability should be prioritised over grammaticality. This

approach makes NLP more robust to errors, as it is not based upon stringent rules. The statistics for this

approach has to come from somewhere, so corpora are used. The use of corpora, as noted above, does not

guarantee grammaticality however. This is not too crucial a problem however as it is not what the empiricists

6



are after; empiricists prioritise performance over competence. The downside of the statistical nature of this

approach is that because language is infinite, and corpora are finite, unseen events become a problem. 

The current trend is a mixture of these two approaches, with a lean on the statistical side. The current

trends are based upon utilising modern day computer power to work with large,  annotated corpora and

machine learning methods.

2.2.4  Detecting Sarcasm

Due to the non-literal  nature of ironic sarcasm, designing software to recognise it  is formidably

difficult. This is due to a one-to-one mapping of words to meaning in current corpora and systems; irony is

not accounted for. A further problem is that there is an absence of accurately labelled naturally occurring

sentences of ironic sarcasm that can be used for research and machine learning systems (González-Ibáñez,

Muresan and Wacholder, 2011). Sarcasm is so notorious for being hard to understand that a special character,

the sarc mark, was created with the intention of filling a gap in conveyance of writing, in the same vein as an

exclamation point or question mark.

Sarcasm, as a form of wit, is not always obvious in its use, causing people to rely on a number of

cues. These cues include using a dead pan or overly exaggerative tone, and the use of exaggerative gestures

or facial cues such as rolling the eyes. Other cues are typically vocal in nature, including the use of a slower

tempo,  raised  volume  and  lower  pitch.  These  cues  are  often  combined  with  particularly  positive,  or

occasionally negative, adjectives, as well as strong verbs or adverbs (Yahoo! Contributor Network, 2008).

There is no prescribed way of indicating sarcasm, which leads to there being no consistent gestures, though

the vocal cues described above are fairly consistent (Yahoo! Contributor Network, 2008).

As previously described, people speaking face to face can rely upon other cues than language ones;

speakers can roll their eyes, place heavy stress upon certain words, slow their speaking rate etc. This is

obviously not available when reading from text. This leads to the problem of only having lexical factors as

clues to work with, both for the reader to pick up on and for a NLP system to detect. As noted previously,

ironic sarcasm is non-literal, which not only gives problems to designing a system to detect it, but also for

readers to pick up on it. Assuming the author does not explicitly state that the phrase is meant sarcastically,

readers have few clues to pick up on the sarcasm, such as the context of the situation, known as common

ground (Clark, 1996), and the words being used to pick up on the sarcasm. An example of some of the clues

that readers and systems can pick up on are extreme adjectives and adverbs, such as 'absolutely fantastic',

which Utsumi (2000) suggests as being a way of implicitly displaying a negative attitude. As you can tell

from the example I used, this is commonly used to express ironic sarcasm. 

A sarcastic sentence is sometimes expressed vocally with heavy stress to audibly give clue that the

sentence is meant non-literally; this is sometimes mimicked in text by extending the letters that constitute a

syllable, an example being “Riiiiight” as demonstrated by Bogart (2008). Another way this is mimicked,
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typically by users of the internet writing on Twitter, forums, or product reviews, is through the use of capital

letters; capital letters, when used throughout an entire word, is conventionally used to denote tonal stress or

shouting. Were the utterance taken from the book quoted above (Bogart, 2008) an actual conversation, the

intonation used, as well as the actual world knowledge supposedly known by the recipient, would be the

clues required to discern it as being sarcastic.

This leads into another problem with detecting sarcasm, world knowledge. World knowledge refers

to knowledge about  things and people in the world that  is  commonly known. Using the same sarcastic

sentence used by Bogart (2008), he writes “'and Moses didn't know how to count to ten.'”, whereas it is

highly likely that Moses could in fact count to 10. Were this taken using the one to one mapping of current

NLP systems,  this  sentence would appear  to  be a  strange non-sequitur,  having no direct  relation to  the

previous sentence. World knowledge, among with the other clues of non-literal intent, are required to discern

that this sentence is not meant literally.

A further problem with the detection of sarcasm is that many utterances that are supposedly sarcastic

do not conform to the definition of verbal irony, namely writing or saying the opposite of what is actually

meant (Gibbs and O'Brien, 1991). Whether this is misuse of the term or an evolution of it is debated.

2.3  Related Work
Sarcasm detection in English text is not a thoroughly researched field, due to the prevailing idea that

a computer system will not be able to comprehend the non-literal nature of sarcasm, the intricacies of its use,

and the fact that even humans have trouble detecting it at times. Nonetheless, some attempts have been made

to  create  a  computational  classifier  for  sarcasm,  or  similar  fields  (irony,  metaphor),  using  different

approaches.

2.3.1 Features

2.3.1.1  Lexical and Pragmatic Features

Due to the complexities described in detecting sarcasm, previous work done by others have all made

assertions  on  how  might  be  a  good  way  to  abstract  the  problem  into  something  that  can  be  solved

computationally. This also includes pinpointing the specific ways that allow us to detect sarcasm as human

beings so that they can be potentially utilised for detecting sarcasm in a computational manner.

Common ground is  one such component  of sarcasm that  helps us to detect  it  as human beings.

Common ground (Clark, 1996) is the shared knowledge or familiarity between the two participants in a

conversation.  The  absence  of  common  ground  between  the  two  participants  can  easily  lead  to  the

misunderstanding of a sarcastic statement; using sarcasm at somebody that was not present for, or has no

knowledge of, a certain event, or at a stranger not expecting the mockery inherent in sarcasm, will typically

lead them to not correctly comprehend the intent behind the sarcastic statement.
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Kreuz and Link (2002)  state  that  this  pragmatic  factor  of  common ground can be projected by

readers to characters that know each other in written text; the participants from the paper reading the excerpts

are capable of reading sarcastic statements more quickly, and with a greater degree of certainty, than when

the characters do not know each other. These results can be explained in terms of a principle of inferability:

people will only employ sarcasm if they are reasonably certain that the people they are communicating to

will interpret it correctly (Kreuz, 1996). This presents a problem; if the use of sarcasm relies solely upon

pragmatic factors, creating software that is capable of detecting it would be difficult.

In later work, Kreuz and Caucci (2007) hypothesise another component that can be used to help in

the detection of sarcasm: interjections. They state that the use of interjections in excerpts from published

works with the phrase “said sarcastically” removed, to prevent instant identification, predict a significant

amount  of  variance in  participants'  ratings  of  sarcastic  intent.  This  leads  them to suggest  that  sarcastic

statements may be somewhat formulaic, and as such computer software could be written to recognise these

lexical factors. The detection of these lexical factors would enable the software to interpret non-literal intent

even if the pragmatic components of non-literal language cannot be identified, bypassing one of the largest

problems in detecting sarcasm.

This idea was extended upon by González-Ibáñez, Muresan and Wacholder (2011), with them stating

that lexical factors alone are not enough to accurately identify sarcasm. Using lexical and pragmatic features,

they attempted to use machine learning to separate sarcastic tweets from those issuing a positive or negative

sentiment. The pragmatic factors included into their work, given that they utilised twitter as their corpus,

consisted of emoticons and the people to whom tweets are being directed. Their work makes note of the fact

that human beings themselves are not particularly adept at discerning what is and isn't sarcastic without

proper context. This note on how humans require proper context, alongside how the pragmatic feature of

directed tweets (it is assumed that the tweeter has some common ground with the tweeted) factored into the

results of the paper, provides further proof that common ground is an important and common feature in

sarcasm.

 Despite the addition of these pragmatic features however, the results from their experiments showed

that  the lexical  and pragmatic features used were not  sufficient  to accurately differentiate sarcasm from

positive or negative tweets. In fact, the results from this paper showed that, for their methodology, humans

do not significantly outperform the machine learning techniques used. As previously alluded to, they note

that their results provide further proof for the need of context, both common ground between the tweeters

and more general  world knowledge,  when attempting to classify sarcasm through lexical  and pragmatic

features.

This need for extra context is not a dead-end for using lexical and pragmatic features as a means of

classifying sarcasm however; the work done by Carvalho et al. (2009) reveals that a marked increase in the

detection of irony detection can be achieved when using what they call “oral or gestural clues” as features.

They describe these oral and gestural clues as: emoticons; onomatopoeic expressions for laughter; heavy use
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of punctuation marks; quotation marks and positive interjections. Though they did not explicitly look for

this, it was noted by González-Ibáñez, Muresan and Wacholder (2011) that smileys and positive emotions

feature among the best of the factors they used for distinguishing sarcastic tweets when attempting to classify

by the presence of factors. With these features giving positive results, they can be potentially combined with

other features to potentially produce a working classifier. Further proof to showing that emoticons in Twitter

are a significant predictor on the likelihood of a sentence being sarcastic can be gained from the word of

Derks et al. (2008). 

2.3.1.2  Pattern-based Features

Davidov, Tsur and Rappoport (2010) propose a different way of trying to classify sarcastic sentences

computationally: through pattern based features. Their study experiments with the idea of extracting patterns

from sarcastic  and  non-sarcastic  sentences,  and  then  using  a  k-means  clustering  strategy to  classify  a

sentence as being sarcastic or not. This clustering method also affords them the ability to not just classify as

being sarcastic or not; in the study they use five levels, ranging from not sarcastic to clearly sarcastic. This

has the advantage of allowing the user to see not just if a sentence is sarcastic or not, but with what degree of

certainty.

Pattern based features are not the only thing that they include in their classifying algorithm however;

they also include some punctuation based features. Building upon what previous work has revealed, namely

that lexical and pragmatic factors alone are not enough to classify sarcastic sentences but are still useful, they

used them in conjunction with their pattern based features to try and make the classifier more accurate.

The results of this study are very promising, with pattern based features providing promising results

when run on both structured sentences from Amazon Reviews, and more unstructured ones from Twitter. It is

theorised in the paper that the algorithm is as successful as it is due to the ability to have incomplete matches

and the fact that their classifier spans a feature space of over 300 dimensions.

The approach by Davidov, Tsur and Rappoport (2010) was not the first study published in the pattern

based field however, or the first published to utilise both patterns and lexical/pragmatic features; Carvalho et

al. (2009) utilised patterns, lexical and pragmatic factors in their study that was published the year before. In

contrast to the more automated and flexible method of gathering the patterns from the corpus being used

itself, they used stricter 4-gram patterns, specifically looking for certain lexical and pragmatic features. This

was done with the intent of focusing on looking for the opposite meanings present in irony,  specifically

positive to negative. These specific patterns were based upon previous research done by them to identify

specific lexical and pragmatic cues that relate to irony. 

As previously stated, their study revealed that oral and gestural clues are a significant predictor of

irony, with pragmatic features such as smileys also performing well. The main focus of their work however,

namely  on  structured  linguistic  knowledge,  proved  to  be  ineffective  at  detecting  irony,  meaning  that

additional classifying features will have to be gained from elsewhere. A downside to this study's relevance to
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my project is that it is based upon Portuguese, so the morphological proofs will not carry over to English and

my project.  It  is  noted  however  that  some  of  the  features  they used,  such  as  emoticons,  are  language

independent and so are still usable. 

2.3.1.3  Personal Comments

This  overview leads  me  to  believe  that  a  classifier  based  upon SASI,  utilising  surface  patterns

extracted from natural language sentences and punctuation as features, would be the most successful out of

those researched.

2.3.2  Corpora

Previous work has used generated sarcastic statements, which are often extreme in their nature and

would typically not be used in common text or speech (Kreuz and Glucksberg, 1989). This confounds the

pragmatic and lexical aspects of sarcasm, meaning that sentences gathered have to gathered from natural

sources to prevent this. Naturally occurring sentences for training and testing the presence of sarcasm can be

obtained from various sources, Google books, Amazon reviews and Twitter being some sources used by the

references above.

2.3.2.1  Twitter

Twitter  has  a  hash  tag  function  where  users  can  tag  certain  posts  with  memes  or  other  labels.

González-Ibáñez,  Muresan  and  Wacholder  (2011)  take  advantage  of  Twitter  in  this  regard  to  obtain

utterances of naturally occurring sarcastic and non-sarcastic tweets. They attempt to alleviate the concerns

noted by Davidov, Tsur and Rappoport (2010) that data from Twitter is noisy by only selecting the tweets

which have the desirable tag at the end of the sentence. They filter the data from Twitter using this criteria

and manually pre-process it  before use to remove duplicates,  spam, foreign language tweets,  URLs and

messages that have the tags as part of the message. 

Despite any filtering and pre-processing before using tweets tagged by their tweeters, the problem

with this method of gathering a corpus remains that relying on the tweets tagged by their authors may lead to

a noisy corpus  due to misuse of the term sarcasm by the author. This misuse of the sarcasm hash tag is

possibly quite a frequent occurrence, given the difficulty human beings have simply discerning it, and also

the propensity of internet users to submit what they type before properly proofing or thinking over what they

have  typed.  It  is  also  noted  by  Davidov,  Tsur  and  Rappaport  (2010)  that  the  “sarcasm”  hash  tag  is

infrequently used by the authors of tweets, due to it having little publicity. 

2.3.2.2  Amazon Reviews

Amazon is another means by which naturally occurring text can be gathered, as utilised by Davidov,

Tsur and Rappoport (2010). Amazon sells a large variety of products, and allows users to post their own
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reviews of the product on the product page. This provides a good variety of contexts for the extraction of

sentences for use in their study of classifying sarcasm. They note that in contrast to tweets, Amazon reviews

are typically much longer, have better structure, have better grammar, and also have the bonus of a known

context (the product being reviewed). 

Each review on Amazon has a star rating of 1-5, with five stars being a very good product. This

meta-data  can  be  exploited,  as  done  by  Davidov,  Tsur  and  Rappoport  (2010),  to  search  for  positive

sentiments in negative reviews. This ties back to the work done by both Carvalho et al. (2009) and González-

Ibáñez, Muresan and Wacholder (2011), with both of their studies noting that the lexical feature of positive

interjections is a potential indicator of sarcasm.

2.3.2.3  Google Books

Google Books contains over 100,00 published works of various genres, providing a good variety of

contexts to  pull  sarcastic  excerpts  from.  Google  books allows users  to  search for books with particular

phrases or words contained within them, with this facility being used by Kreuz and Caucci (2007) to extract

excerpts from the books available that contain the phrase “said sarcastically”. To provide some context to

each sarcastic utterance, Kreuz and Caucci (2007) take the paragraph the key phrase appears in, as well as

the preceding and following two paragraphs.

A brief search using the same term “said sarcastically” as used by Kreuz and Caucci (2007), will

reveal that this is not a particularly accurate means of gathering a corpus without supervision however; a

large number of authors do not use the term sarcastically in the way I am looking for, namely in the form of

verbal irony. Authors instead commonly use it to mean something amusingly witty, “'I like where this road

ended,  but  man does  somebody have to fix all  those damn bumps along the way.'  I  said sarcastically”

(Clifford,  2002),  or  said  with  a  certain  intonation,  “She  walked  over  to  the  bathing  pool  and  said

sarcastically, 'Well, who do we have here?'” (Ellis and Ellis, 2010).

This is noted by Kreuz and Caucci (2007) in their work, arguing that authors may not explicitly use

the term “said sarcastically” in their  work,  as it  can reflect  poorly on their  esteem of their  readers and

somewhat dampen the comedic value of the statement. There are arguments on both sides for whether or not

authors should include the phrase “said sarcastically”, or any similar deliberate pointers to the same affect, in

their work. It is argued that a writer should have provided enough context to have given the non-literal intent

without explicitly stating it as such, leaving the detection up to the reader. The counter to this stance is that

sarcasm and irony are hard to portray in text, and so authors will still need to use confirming expressions to

point out these sarcastic utterances. Nonetheless, there are plenty of books available via Google Books with

the phrase present, with the previously stated caveat that the phrase is not always used correctly or in the way

I am looking for.
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2.3.2.4  Website Comments

Another potential corpus is to use the comments sections present in both forums and websites, such

as Youtube and newspaper websites as was used by Carvalho et al. (2009). From a single popular newspaper

website, they managed to gather roughly one million sentences from a five month period. Their study was

focused on recognising irony in relation to named-entities, with them using this corpus in conjunction with a

lexicon of frequently mentioned politician names to extract their desired sentences automatically.

2.3.2.5  Data Enrichment

Davidov,  Tsur  and  Rappoport  (2010)  propose  a  method  of  expanding  a  small  corpus  without

resorting to noisy and expensive annotation. They posit that sarcastic sentences frequently co-appear in texts

with other sarcastic sentences. Under this hypothesis, they perform an automated web search using each

sarcastic sentence from their training set and collected up to 50 excerpts that the search engine returned. If

the sarcastic sentence being searched for was more than 6 words, only the first 6 words were used for the

search to prevent the search becoming too specific. Each of these sentences was then added to the training set

with the same sarcasm label as the search query that acquired it. 

This  method does  not  fix a  problem that  was present  in the corpus used by Davidov,  Tsur  and

Rappoport (2010) however, that of a ratio imbalance in their corpus. Due to the rarity of sarcastic sentences

in comparison to other sentences, their corpus has far more non-sarcastic sentences than sarcastic ones, with

data enrichment not solving this problem.

2.3.2.6  Personal Comments

Each of  these  corpora  described  would  appear  suitable  for  my given  task  of  collecting  natural

sarcastic  sentences.  The one exception to this  being data enrichment,  as  unless it  is  used to  fix  a ratio

imbalance by only collecting sentences that fall into the smaller class, all it succeeds in doing is gathering a

larger corpus. Given the success had with the other corpora, this would not seem to be a necessary measure

to be taken. 

2.3.3  Methodology

The  studies  referenced  use  both  different  features  and  corpora  in  their  attempts  to  design  a

computational  classifier  of  sarcasm, with varying results.  In accordance with these differences,  different

methodologies are used by each; the primary difference being when searching for lexical and pragmatic

features versus searching for patterns.

2.3.3.1  Lexical and Pragmatic Features

Kreuz and Caucci's (2007) study on the lexical influences on the perception of sarcasm used two

independent judges to code in a binary fashion each of the excerpts obtained from Google Books in their
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corpus in three dimensions. The binary system that they used indicated whether or not there were adjectives

and adverbs, interjections, exclamation points and question marks within each excerpt. A number of students

were then used to mark a selection of their corpus, always including some control excerpts, upon a 7 point

scale  of  how sarcastic  the  excerpt  was,  given that  the  term “said sarcastically”  was removed from the

excerpts that it was present in. To help the students, where the phrase “said sarcastically” had been removed,

the phrase to which it was referring to was emphasised in bold. The students were tested in groups, and were

given ample time to work through their provided excerpts in their own time. Each student was not given a

definitive definition of the term sarcasm, instead being told to rely upon their own understanding of it. 

To determine the importance of the lexical factors tested in the study,  Kreuz and Caucci (2007)

performed a regression analysis using the mean sarcasm rating of each excerpt as the criterion variable. Five

predictor variables were employed for the regression analysis: the number of words, the number of bold-

faced words, the presence of adjectives and adverbs, the presence of interjections and, the use of exclamation

points and question marks. As done before by the judges, variables 3-5 were coded in a binary. 

In the study by González-Ibáñez, Muresan and Wacholder (2011) attempt to empirically identify

lexical and pragmatic features to classify tweets as sarcastic or not. They gather their lexical factors using

unigrams and dictionary based features, and use positive and negative smileys, as well as the ToUser Twitter

command, which marks if a tweet is a reply to another tweet, as their pragmatic features. 

The Linguistic  Inquiry and Word Count  (Pennebaker,  Francis  and Booth,  2007)  is  used  for  the

dictionary based features, which groups a set of 64 word categories into four general classes: Linguistic

Processes, which consist of adverbs and pronouns; Psychological Processes, which consists of positive and

negative emotions; Personal Concerns, which consist of achievements and work; and Spoken Categories,

which consist  of  assent  and non-fluencies.  In  conjunction with the  Linguistic  Inquiry and Word Count,

González-Ibáñez, Muresan and Wacholder use WordNet Affect (Strapparava and Valitutti, 2004) and a list of

interjections and punctuations as used by Kreuz and Caucci (2007) for their dictionary based features. This

combination when merged into a single dictionary covered 85% of the words in the 2700 tweets used in the

study,  providing a good coverage despite the disposition of  internet  users to create new words and use

abbreviations. 

To  quantify  which  of  the  features  listed  above  has  the  greatest  impact  discriminating  between

sarcastic, positive, and negative tweets, feature ranking was performed. The two measures used in the study

for the feature ranking were the presence and frequency of the factors in each tweet, with both a three way

comparison and a two way comparison being used for the three categories. 

González-Ibáñez,  Muresan  and  Wacholder  (2011)  also  performed  classification  experiments  to

investigate  the  usefulness  of  lexical  and pragmatic  features  when utilising machine learning .  For  their

classification  experiments  they used  two standard  classifiers:  a  support  vector  machine  with  sequential

minimal optimisation, and logistic regression. As stated previously, unigrams were used as a feature for the
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classification  experiment;  bigrams  and trigrams were  both  noted  to  not  provide  any better  results  than

unigrams. Both classifiers were trained on a balanced dataset and tested through five-fold cross-validation.

2.3.3.1.1  Comparison against Human Classification

They asked 3 judges to attempt to classify 10% of the corpus (90 sarcastic tweets, 90 positive tweets,

90 negative tweets) as either sarcastic, positive or negative. The judges were also allowed to state whether

they were unsure if a tweet that they classified belonged in its class, and were permitted to comment on the

difficulty of the task. 

In response to the studies by Derks et al. (2008) and Carvalho (2009), González-Ibáñez, Muresan

and  Wacholder  (2011)  also  performed  classification  experiments  utilising  the  above  machine  learning

classifiers  with  tweets  that  contained  emoticons,  creating  a  new,  smaller  dataset  to  accommodate  this

experiment. This experiment was done with the intention of comparing it against human classification, to

study the affect of emoticons on human detection and computational classification. The same procedure as

above was used for this experiment, with the exception that only two judges were used this time, and the

computational model was not retrained for this new data; the same trained model as utilised in the standard

human vs computational classifier experiment. 

2.3.3.2  Pattern-based Features

Carvalho et  al.  (2009) utilise 8 patterns based upon research they conducted to find lexical  and

pragmatic features that are potential clues of irony. The 8 patterns are a mix of structured 4-gram patterns

that search for a particular lexical feature and takes the words before or after it, or are simply just particular

lexical features. The features they used are: diminutive forms, demonstrative determiners, interjections, verb

morphology, cross-constructions, heavy punctuation, quotation marks, and laughter expressions. All of the

patterns in the study restrict the polarity of  their matching sentences to positive; they focus on finding

positive  patterns  that  are  being used in  a negative context.  This  typically took the form of  a  matching

sentence requiring the presence of at least one prior positive adjective or noun in the 4-gram window of four

word, while excluding the occurrence of any negative element within the same window. To find the positive

polarity adjectives and nouns, they created a sentiment lexicon with manually annotated polarities. 

The diminutive forms, demonstrative determiners, verb morphology and cross-constructions are all

features based in Portuguese, and so will  not likely transfer across into English. The remaining features

however,  are  language  independent,  and  so  can  still  be  used  for  research  purposes.  To  search  for

interjections, they simply used a lexicon of positive interjections such as “bravo”. Their heavy punctuation

feature consisted of searching for sentences containing more than one exclamation point or question mark.

To find positive instances of quotation marks, they searched for sentences containing one or two quoted

words, with at least one of the words being a positive adjective or noun. The laughter expressions features

were found by searching for the acronym “lol” and its variations, onomatopoeic expressions, and positive
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emoticons. 

Once they had gathered their corpus, as explained above with the requirement that each sentence

must have at least one of the named politicians from their lexicon, they generated several diminutive forms

for each named-entity. These were then used for checking matches of their diminutive form feature. The rest

of the features were searched for by scanning the corpus for sentences matching any of their 8 patterns. For

any pattern that matched over 100 sentences, the particular pattern was then manually evaluated through a

four way classification system: the pattern is ironic, the pattern is not ironic, the pattern is ambiguously

ironic, and undecided.

The  semi-supervised  sarcasm  identification  algorithm,  SASI,  developed  by  Tsur,  Davidov  and

Rappoport  (2010)  employs  two  modules:  semi-supervised  pattern  acquisition  for  identifying  sarcastic

patterns that can serve as features for a classifier, and a classification stage that classifies each sentence to a

sarcastic class. 

Similar to how Kreuz and Caucci (2007) had their testers annotate their excerpts, each sentence to be

used as a seed is annotated with a number within the discrete range of 1 to 5, with 5 indicating a clearly

sarcastic sentence and 1 an absence of sarcasm. From these labelled sentences, the syntactic and pattern-

based features are extracted for utilisation as a feature vector. To allow more general patterns to be used, as

with the method described below for Google Books by Kreuz and Caucci (2007), any explicit target, such as

the product, author, company and book name is replaced with a  generic meta tag. In the case of Twitter, they

remove the hash tags, users and URLs (Davidov, Tsur and Rappoport, 2010). These patterns were extracted

by searching through each sentence in their corpus for words that fell into one of two categories: content

words or high frequency words. A word falls into one of these two classes based upon its frequency within

the entire training corpus. The patterns were constructed of a number of these high frequency and content

words, with only a certain number of each word class being allowed in each pattern. 

Filtering was then done to remove the patterns that are too general and also too specific. Patterns that

are too general are filtered out by removing the patterns that get extracted from both a clearly sarcastic

sentence, and a non-sarcastic sentence, whereas the patterns that are too specific are removed by deleting the

patterns that are extracted from only one Amazon product review. Once the patterns had been filtered, the

remaining patterns are matched against both the training and test sets to create feature vectors, with a value

of 1 being given to a perfect match of the pattern to the sentence, a value of 0 for no match, and a value

between 1 and 0 for a partial match. 

Punctuation based features are also included into the feature vectors. The features used in the study

are the number of words in each sentence, the number of exclamation points, the number of question marks,

the  number  of  quotes  in  the  sentence,  and  the  number  of  capitalised words  in  the  sentence.  These  are

normalised to be in the range of 0-1 in line with the pattern vectors by dividing by the maximum observed

value of each category, thus allowing each to have the same weight as a single pattern feature.  
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Once each sentence in both the training and test sets has a vector, each test set vector is compared

against its nearest neighbours from the training set in a k-nearest neighbours like strategy. The k nearest

vectors are found by Euclidean distance, with the test sentence being classified as one of the five sarcasm

levels by a weighted average score calculated from these closest vectors.

2.3.3.3  Comments

None of the methodologies described seem to be too time consuming for my personal skill level and

project time constraints; each methodology essentially comes down to searching for particular features in

text as all of the papers wished to avoid expensive annotation. Given the success of the SASI classifier

however,  and as  it  continues  the  trend of  avoiding time consuming annotation,  it  still  seems to be the

strongest contender as the basis of my classifier.

2.3.4  Results

The results from each of the studies, while not all coming up with a robust, working classifier, all

reveal  information of potential use that,  when combined together,  may create a better  sarcastic sentence

classifier. 

2.3.4.1  Lexical and Pragmatic Features

The results from the studies on lexical and pragmatic features (Kreuz and Caucci, 2007)(González-

Ibáñez, Muresan and Wacholder, 2011) conclude, that while lexical and pragmatic features are present in

sarcastic sentences, alone they are not enough to accurately classify a sentence as sarcastic or not without

established common ground and context. 

Kreuz and Caucci (2007), with their study investigating if there are lexical features that can identify

sarcasm,  found that  their  human  testers  were  capable  of  differentiating  between the  sarcastic  and  non-

sarcastic sentences. They found from their regression analysis that the length of the excerpts were not a large

influence on the judgement of the testers, stating that longer excerpts gave more contextual clues and nothing

else. They found however that only positive interjections were a significant predictor of sarcastic intent, with

their other features of adjectives, adverbs, and punctuation being of little consequence. 

 The feature ranking done by González-Ibáñez,  Muresan and Wacholder (2011)  revealed that  for

differentiating  between  sarcastic,  negative,  and  positive  tweets,  negative  emotion,  positive  emotion,

negation, emoticons, auxiliary verbs and punctuation marks are in the top ten features. For differentiating

between sarcastic and non-sarcastic specifically,  the five best features are: positive emotions, the present

linguistic process, questions, the ToUser command, and the affect psychological process. Their results show

that in sarcastic tweets a positive emotion while using negation words, and the pragmatic factor of knowing

who the tweeter is talking to, indicating common ground, are important distinguishing features. 

In  their  classification experiments,  González-Ibáñez,  Muresan and Wacholder  (2011)  utilised the
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presence of their features, the frequency of their features, and unigrams, to investigate the usefulness of

lexical and pragmatic features in machine learning for the given task. Using support vector machine with

sequential minimal optimisation, they achieved an accuracy of 65.44 with unigrams, with frequency and

presence being close behind. For logistic regression, presence gave the best accuracy of 63.17, with again the

others  being close behind.  With results  only just  above a  50/50 chance,  they conclude that  lexical  and

pragmatic features alone are not sufficient to classify sarcastic from non-sarcastic sentences. They speculate

that  this  may be due to the difficulty of identifying sarcastic utterances in isolation,  without  the use of

contextual evidence. 

2.3.4.1.1  Comparison against Human Classification

The three judges managed to achieve an overall agreement of 71.67%, with a mean accuracy of

66.85% with 0.37% uncertainty. The accuracy drops to 59.44% however when only looking at the tweets that

all three judges agreed on. 

After training the machine learning algorithms used in their main classification experiment, namely

support vector machine with sequential minimal optimisation and logistic regression, on the remaining 90%

of their corpus, they ran these classifiers on the same 10% that the human judges classified, using the judges'

results  as  the  human  baseline  interval.  Only support  vector  machines  utilising  unigrams  (68.33%)  and

presence (67.78%), and logistic regression utilising presence (67.22%) as features achieved better results

than the human baseline interval. These results, as can be seen, are very similar, with not much separating the

results of human versus computational classification. 

The results of their experiments with emoticons are a little different to the above. The two human

judges achieved an overall agreement of 89%, with the results showing that emoticons do help people to

distinguish sarcastic from non-sarcastic tweets; the judges achieved an accuracy of 73%, with an uncertainty

of 10%, and achieved an accuracy of 70% where they both agreed. The computational classifier in achieved

a similar accuracy of 71% with the support vector machine utilising unigrams as features, thus showing that

both humans and the computational classifier were more capable of classifying sarcasm when emoticons are

included in the message.

The judges in the paper note that the lack of context and the brevity of tweets are big factors in their

difficulties  distinguishing  the  sarcastic  from non-sarcastic  tweets.  One  of  the  judges  is  stated  to  have

explained that world knowledge about recent events had to be called on at times to make judgements about

whether a tweet was sarcastic or not. This leads the authors of the paper, as previously stated, to suggest that

information  about  common  ground  between  tweeters  and  world  knowledge  are  necessary  to  create  an

accurate computational classifier of sarcasm.

2.3.4.2  Pattern-based Features

Carvalho  et  al.  (2009)  reveal  in  their  experiment  that  classifying  sentences  as  ironic  or  not  by
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searching  for  structured  patterns,  in  Portuguese  at  least,  does  not  work;  the  patterns  involving  more

structured linguistic knowledge, namely diminutive forms, demonstrative determiners, verb morphology and

cross  constructions,  simply do not  find many,  or  any,  matches.  They state that  this  is  likely due to  the

strictness of the structure, with them showing that removing one of the constraints on the pattern, diminutive

forms, allows it to match a large number of sentences. This defeats the purpose of the structure though, with

them stating that the large majority of these new matches simply being normal sentences.

Despite  this  failure,  the  unstructured  patterns  searching  for  positive  interjections,  punctuation,

quotation marks and laugh expressions, all match a large number of sentences. The accuracy of these patterns

varies  rather  wildly  however;  the  worst  results  coming  from  interjections  and  punctuation:  correctly

identifying 44.88% and 45.71%; incorrectly identifying 13.39% and 27.53%; was undecided on 40.94% and

26.75%, and misclassified due to ambiguity 0.79% and 0% respectively. In contrast, the results from the

quote and laugh patterns are far more promising: the quotes pattern correctly identified 68.29%, incorrectly

identified 21.95%, was undecided on a mere 2.73%, and was ambiguous on 7.03%; whereas  the laugh

expressions pattern correctly identified 85.40%, incorrectly identified 0.55%, was undecided on 11.13%, and

was misclassified 2.92%. It is worth noting however that these are classified by humans, the automated part

merely matches these sentences.

The larger than average misclassification rate for the quotes pattern was largely attributed to two

typical  situations:  quotation  marks  being  used  to  delimit  a  multi-word  expression;  or  being  used  to

differentiate a technical term or brand. The misclassification rate for punctuation was attributed to people

reinforcing rhetorical questions, which are not always ironical.  As can be clearly seen however, laughter

expressions such as “lol”, onomatopoeic expressions and emoticons are a good indicator of irony, which ties

into sarcasm, with the added bonus of having a low rate of misclassification. 

It  is  noted  in  the  study  that  they  had  trouble  distinguishing  if  the  sentences  returned  by  the

interjection and punctuation patterns were ironic or not. This is due to them simply requiring context for

them to classify it as ironic or not, providing further credence to the theory that either world knowledge and

common ground are needed to classify utilising lexical or pragmatic features, or to try and circumvent the

need for it by utilising a pattern-based method such as SASI (Davidov, Tsur and Rappoport, 2010). 

The results  achieved by the  SASI  classifier  are  extremely promising,  both achieving accuracies

exceeding  those  of  the  other  studies  researched  and  also  being  a  more  robust  and  flexible  classifier,

seemingly usable across multiple corpora. The SASI classifier managed to achieve an accuracy of 0.947 and

an F-score of 0.827 on the Amazon Reviews corpus, and an accuracy of 0.896 and an F-score of 0.545 on the

Twitter corpus. 

It is noted as being interesting that while the data enrichment strategy used in the study does improve

the accuracy and F-score, it is only by a very small amount (0.945 and 0.812 to 0.947 to 0.827). It is also

noted that the high accuracy is achieved due to the biased corpus; there are far more non-sarcastic than
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sarcastic sentences due to their rarity.

2.4  Conclusion
Classifiers  based  on  lexical  and  pragmatic  features  alone  have  proved  to  be  ineffective  at

distinguishing between sarcastic and non-sarcastic sentences, but have also revealed that they do give some

indication of its presence, particularly emoticons and features that represent pragmatic features. Pattern based

features  have  also  proved  to  be  ineffective,  despite  being  theoretically  sound,  when  the  patterns  are

structured. The only strategy I found in my research that was provably successful was the pattern based SASI

classifier.

With these revelations revealed,  and due to the success of the SASI algorithm,  I will  utilise its

strategy of using surface patterns extracted from the text itself before clustering and classifying using k-

nearest neighbours. Despite making only a small contribution to the accuracy and F-score, I will continue to

use the punctuation based features used in the paper (Davidov, Tsur and Rappoport, 2010). I will however

not use perform data enrichment as utilised in the paper; the results showed that having a larger corpus of

similar language, with no balancing of sarcastic and non-sarcastic sentences, made very little difference to

the accuracy and F-score. 

The favourable results revealed regarding emoticons and laughter acronyms such as “lol” may lead

to, if incorporated into SASI, more accurate classifications. As such I will have this as an extension to my

project,  investigating  if,  when  implemented  in  a  similar  manner  to  the  punctuation  based  features,  the

accuracy and F-scores improve or degrade.
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3  Classifier Design
As explained  in  my analysis  of  related  work,  I  will  base  my classifying  algorithm upon SASI

(Davidov, Tsur and Rappoport, 2010). The SASI classifier requires a corpus of natural sarcastic and non-

sarcastic sentences, split into five levels based upon how sarcastic they are (1 being not sarcastic, and 5 being

clearly sarcastic). From here, SASI extracts patterns from the corpus, before matching the these patterns to

sentences to create vectors, and classify based upon the k-nearest neighbouring vectors.

3.1  Appropriate Technologies
To recreate the SASI classifier, I will need to utilise a programming language that supports some

form of text comparison and manipulation to create my classifier. Java is an object orientated programming

language that  supports string comparison and manipulation,  allowing it  to function as the programming

language I will create my classifier with. Other languages also support these features, Python being a popular

choice due to it possessing the Natural Language Toolkit, however I am most comfortable programming in

Java.  Given the  time  constraints  of  this  project,  Java  is  likely the  best  choice  to  ensure  the  project  is

completed to schedule.

3.2  Corpora
As used by Kreuz and Caucci (2007), I will utilise Google Books to gather my corpus. This is to test

the  SASI  algorithm  in  a  way  not  covered  in  their  original  study,  that  of  on  utterances  in  a  more

conversational  context.  The  corpora  gained  from Amazon  Review is  in  the  context  of  a  single  person

expressing their ideas of a product, they are dictating to nobody in particular without expecting a response.

While Twitter can be somewhat conversational, it is commonly used to comment on a particular world or

personal event without expressly expecting to have to provide responses to any responses returned. As such,

among sarcastic tweets, there is likely a large ratio of tweeters commenting on a world or life event, and

those responding to a tweet another Twitter user has tweeted about a world or life event, as compared to

those done in a conversational manner.

In the same way that Kreuz and Caucci (2007) gathered their corpus from Google Books, I will

utilise the in-built function available using Google Books to search for books containing sentences with the

phrase  “said  sarcastically”.  Google  Books  unfortunately  does  not  support  a  copy-paste  function,  thus

requiring that I manually type out each sentence. Given that I will be required to pre-process the data into

five separate classes, and in other ways (described below), this is not a terrible inconvenience and has not

swayed me against using Google Books as my corpus.

I gathered 100 non-sarcastic utterances as my negative training set, and 100 utterances of levels 3-5

as my positive training set. I will use 12 sarcastic utterances of levels 3-5 and 12 non-sarcastic utterances of

levels 1-2 for my training set, roughly 10% of the corpus. Each sentence was classified as being sarcastic or
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not by a human judge.

3.3  Methodology

3.3.1  Data Pre-Processing

SASI is designed to extract and utilise surface patterns to classify sentences as sarcastic or not. As

such, specific patterns are avoided, with general patterns being targeted. As characters in books are likely to

address who they are talking to by name, names are replaced with a meta-tag of [name], to help achieve a

more general pattern. Characters in books also quite frequently have names created by their authors, thus

requiring that changing names to the meta-tags be made by hand, as a corpus of fantasy names does not exist

for me to exploit. It is worth noting that I do not replace common nicknames such as Babydoll with the

[name] meta-tag; I posit that these can potentially be a sign of sarcasm. 

Tokenisation is a general NLP problem that I quickly ran into while testing my code; Java lacks a

means of distinguishing between an apostrophe and a single quote mark. As there was no automatic solution

to this tokenisation problem that  I could think of without also affecting apostrophes, and the fact  that I

already had to  manually pre-process  the  text  to  remove names,  I  resorted to  preprocessing my data  by

manually changing single quotes to double quotes.

As Java, to my knowledge, lacks a means of recognising italicised words, which are a potential

indicator of sarcasm, I shall pre-process these words by changing them to all capitals. This allows me to

highlight the sarcastic intent in a way that Java can read in.

3.3.2  Patterns

The majority of features utilised by SASI are patterns. I automatically extracted the patterns from my

corpus by following the algorithm described by Davidov, Tsur and Rapooport (2010) in their paper. This

consists of classifying words into one of two categories before creating patterns based on combinations of

these two classes that are present in the corpus.

3.3.2.1  Word Classification

Words are classified into one of two classes: High Frequency Words (HFW) and Content Words

(CW). Words are classified as being in one of these categories based upon their frequency within the corpus,

with words above a threshold value being classified as HFWs, and words below the same threshold being

classified as CWs. The  [name] meta-tag, as well as punctuation, are both also classified as being HFW.

Once classified those words that were classified as a CW are replaced in the text by “CW”, with the HFW

words remaining as they are.

I accomplished this in Java by first splitting the sentences by words and placed them all into an

ArrayList, such that I had an ArrayList of every word in my corpus. An ArrayList was chosen over a simple
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array due to the unknown quantity of total words that I would have. From this point I utilised a HashMap to

count the frequency, utilising the structure of a HashMap by adding 1 to the value each time the key is found

when searching through the ArrayList of words. This took the form of:

3.3.2.1.1  Get Frequency Flowchart

3.3.2.2  Word Classification

With the frequencies gathered, the next step was to classify the words as a HFW or CW, based upon

their frequency. A new two dimensional array was created, of the same size as the frequencies HashMap, due

to it containing no duplicated words. This was done with the intention of having an array containing each

word, with the label of HFW or CW being in the second dimension. As noted previously, the words are

classified by their frequency being above or below a certain threshold, which given my small corpus, I chose

to be 3.

3.3.2.3  Word Replacement

With the words now each classified as being a HFW or CW, the words classified as a CW needed to

be replaced with the CW tag to facilitate the extraction of patterns. This was accomplished by first splitting

the  training  set  by both  sentence  and  word  into  a  two  dimensional  ArrayList,  such  that  the  ArrayList
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contained every training sentence  with each  of  it's  words being  an  individual  element,  allowing me  to

perform String comparisons on a word by word basis.

I ran into a tokenisation problem here, namely in regards to how question marks and brackets were

read in; both have functions within regular expressions, which String comparison calls upon to perform its

comparisons. To solve this, while iterating through the words within each sentence, if a question mark or

bracket was found, a preceding “\\” was inserted, to clarify it as a character and not a command. 

Another tokenisation error was also found at this stage, which was alluded to earlier; apostrophes

break word boundaries. As I wanted words such as “It's” to not be counted as two separate words, I decided

to, rather than define my own word boundary through regular expressions, use a rather simple fix: I replaced

apostrophes with the “á” character due to its almost non-existent use in English text, and its status as a

alphanumeric character not breaking the word boundary.      

With these problems solved, the actual word replacement could begin. This was achieved through the

aforementioned String comparison. Each word in each sentence was compared against the words in the word

corpus for matches. Where matches were found, the class was checked, with a word class of “CW” requiring

that the word be replaced with the “CW” tag through the replaceAll method. 

An  oversight  on  my  part  that  was  revealed  through  testing,  was  that  this  method  of  word

classification and replacement does not take into account new words appearing in the sentences being tested.

This oversight was corrected through the implementation of a new method that is run on the test sentences

after the initial word replacement method. 

The method goes through each word of each test sentence, using String comparison to check if the

word exists within the word corpus (“CW” tags are skipped). As spaces are also not included in the corpus,

the first letter of the new word is taken to check that it is alphanumeric, before the word is replaced with the

“CW” tag.
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3.3.2.3.1  Replace Words Flowchart

3.3.2.4  Pattern Extraction

Once all of the words in the corpus have been classified and the content words have been replaced,

the extraction of the patterns can begin. The patterns are made up of 2-6 HFWs and 1-6 CWs. Each pattern

must begin and end with a HFW, to prevent capture of any multi-word expressions. As such the smallest

pattern that can be extracted is HFW, CW, HFW. While this does prevent capture of very short expressions,

such as “great!”, which may be sarcastic, at this moment in time I am not searching for such lexical features. 

In  a  similar  vein to how Davidov,  Tsur and Rappoport  (2010)  visualised it,  I  make use of  two

counters,  one for  HFW and the other  for  CW, to allow patterns  to  be extracted by filling up the slots
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available. Utilising my split corpus and String comparison, I search through every word in every sentence till

a word is found that isn't a CW. Once a HFW word has been found, the rest of the words in the sentence from

this particular word are checked to see if a valid pattern can be formed. If a pattern is formed, the pattern is

added to the pattern corpus, before the program continues checking from this point to see if another pattern

can be formed with the remaining HFW and CW slots.

Each of the patterns being added to the pattern corpus also have their respective sarcasm level added

in a second dimension of the corpus ArrayList, for use later on in the program. This is achieved through a

simple  counter,  as  the  split  sentences  are  already separated  by their  sarcasm level  they are  read  in  as

parameters to the method in their order of sarcasm, with a counter simply appending the respective level to

the pattern corpus. 

3.3.2.4.1  Pattern Extraction Flowchart
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3.3.2.5  Pattern Filtering

Though aiming to gather general, surface patterns, filtering is needed to prevent the patterns getting

too general and causing conflicts between the levels of classification. This filtering is done by removing the

patterns that are extracted from the training set from both level 1 and 5 sentences. 

As  previously noted,  each  pattern  has  the  sarcasm level  of  the  sentence  it  was  extracted  from

assigned  to  it.  With  this  information,  it  is  possible  to  search  through  the  pattern  corpus,  using  String

comparisons to compare the patterns that are marked as level 1 against those marked as level 5. If any

matches are found, the corpus can then be searched through using String comparisons to find all occurrences

of the offending pattern, not just those marked as level 1 or 5, for removal from the pattern corpus.

3.3.3  Pattern Matching

Once patterns from both the training and testing sets have been gathered, and after the patterns from

the  training  set  have  been  filtered,  the  pattern  matching  procedure  begins.  This  stage  of  the  classifier

attempts to match every pattern in the training and testing sets against every sentence in the training set to

create a feature vector for each pattern. Each pattern feature is classified as being in one of four groups:

• Exact Match – An exact match is where all of the pattern components appear in the sentence in the

correct order without any additional words between any of the components.

• Sparse Match – A sparse match is where all of the pattern components appear in the sentence in the

correct order, but with additional non-matching words between pattern components.

• Incomplete Match – An incomplete match occurs when only 2 or more, but not all, components of

the pattern appear in the sentence, with at least one of the components being a HFW.

• No Match – This match only occurs when even an incomplete match is  not  possible;  when no

components, no HFW components, or only one pattern component appear in the sentence. 

The values of each feature are within the range of 0-1, and are calculated as follows:

• Exact Match – 1

• Sparse Match – α

• Incomplete Match – γ * n/N

• No Match – 0

With α and γ having the value of 0.1, n being the number of matched components, and N being the

total number of components in the pattern. While α and γ can be set anywhere between 0 and 1, I use the

same value as used by Davidov, Tsur and Rappoport (2010) to facilitate any comparisons I wish to do with

their work. 
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To facilitate String comparisons in a similar vein to how I have been performing comparisons so far,

I split the patterns by their components. Each word in each sentence is then compared against each pattern

component in each pattern to search for matches. 

Where a matching word and component is found, a new loop begins from this point. This new loop

attempts to find a match for the pattern by creating a secondary loop that searches for matches from the

found component onwards. This secondary loop is used to ensure that all matches are found for a particular

pattern. 

As each match is made, the feature value is calculated and added to an ArrayList of feature values for

that particular sentence against that particular pattern. Unless a perfect match is found, this searching for

matches continues until there are no more pattern components to run comparisons with.

Once a pattern has been compared in its entirety against a sentence for a match, the best match from

the pool of matches is taken as the feature value. This is completed for each pattern for a single sentence

before being concatenated together to create a feature vector. At this point the punctuation based feature

values are calculated and appended to the feature vector (see section 3.3.4 below), to finalise the feature

vector for that sentence.

3.3.3.1  Pattern Matching Flowchart
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3.3.3.2  Check for Matches

3.3.3.2.1   Get Match Value
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3.3.3.2.2  Get Best Vector Value

3.3.4 Punctuation Features

The punctuation-based features used by SASI carry the same weight as a single pattern feature when

classifying a sentence as sarcastic or not. This is achieved by normalising each feature by the maximum

observed value of that particular feature, placing it within the range of 0-1, the same as a pattern feature.

Each punctuation feature is then appended to the feature vector for that sentence, thus allowing it to be used

in the classification algorithm. The punctuation features searched for are:

• The length of the sentence in words.

• The number of exclamation points in the sentence.

• The number of question marks in the sentence.

• The number of quotes in the sentence.
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• The number of capitalised words in the sentence (e.g. REALLY).

The punctuation features are counted on a sentence by sentence basis, with the method being called

after the pattern features have been matched to a feature vector. Each of the punctuation features are counted

using String comparison, before being normalised to give the feature value and added to the feature vector. 

3.3.5  Classification Algorithm

As previously stated, the SASI classifier utilises a k-nearest neighbours like strategy. The 5 nearest

matching, scarce, or incomplete vectors from each testing vector are calculated by euclidean distance, before

being used in the classification algorithm. The classification algorithm returns a weighted average of the k

closest matching vectors. The classification algorithm is as follows (Davidov, Tsur and Rappoport, 2010):

Where i and j are the nearest k vectors.

Where there are less than k matching patterns, k, instead of being equal to 5, is instead the number of

matching patterns. Where there are no matches whatsoever, the sentence is given a label of “1” (clearly not-

sarcastic) by default. 
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3.4  Flowchart of Classifier
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3.5  Evaluation Method
I will evaluate the performance of my classifier algorithm against that of a human. Similar to the

evaluation method used by  González-Ibáñez, Muresan and Wacholder (2011), I will take a set of sentences

from my corpus, González-Ibáñez, Muresan and Wacholder use 10% of their corpus (270 tweets), and then

get two human judges to classify each as being either sarcastic or not sarcastic. I will take their average

accuracy of  classifying  a  sentence as  sarcastic  or  not,  and the accuracy of  when all  judges agree on a

sentence being sarcastic or not, as the human baseline interval (HBI).  I will then run my classifier on the

same sentences and compare it against the HBI. 

I will not be comparing my results of classification level against those of a human, as I expect there

to be both a large disagreement between which of the five levels each sentence falls into between the judges,

and also a large amount of error given the unclear notion of levels of sarcasm, which is likely subjective to

the individual. 

I will also evaluate my classifier algorithm by comparing my results against the results gained by

Davidov,  Tsur and Rappoport  (2010)  in  their  study.  Though using a different  baseline,  I  intend to  only

perform  a  results  comparison  to  evaluate  whether  or  not  the  SASI  algorithm  can  be  applied  to  the

conversationally structured utterances found in literature.

3.6  Planned Extensions

3.6.1  Extended Corpora

As one of the extensions of my project is to run it on a larger, more diverse corpus, with available

time I will use Twitter to get more unstructured, free form sentences to train and test on. I will gather the

tweets utilising the #sarcasm and #sarcastic hash-tags in the same manner as Davidov, Tsur and Rappoport

(201), and González-Ibáñez, Muresan and Wacholder (2011).  

The tweets would be pre-processed in a similar manner to the corpus gathered from Google Books:

names would be replaced with a [name] meta-tag; single quotes would be replaced with double quotes;

changing italicised words for fully capitalised words; and getting a judge to classify each tweet based on its

sarcasm level within the discrete range of 1-5. Additional pre-processing tasks specific to a Twitter corpus, as

detailed by Davidov, Tsur and Rappoport (2010), would be to replace the  ToUser, hash-tag, and URL link

commands with the meta-tags [user], [hash-tag], and [link] respectively. 

3.6.2  Additional Lexical and Pragmatic Features

Another of my extensions was to implement additional lexical and pragmatic features that have been

shown to be good predictors of  sarcastic  intent.  The features  that  I  would have implemented,  as  stated

previously,  were emoticons, and laughter acronyms such as “lol”.  Both of these are widely used on the
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internet and through text messaging, and have been shown previously to be significant predictors of sarcasm.

An  extra pragmatic feature that could be included would be to search for tweets utilising the ToUser

command; studies have shown that this is an indicator of common ground, which, when combined with other

features, is potentially a strong predictor that a tweet may be sarcastic. 

A further lexical feature that  could be included would be positive interjections, such as “great”.

Positive interjections have received mixed responses from the papers I studied. In my corpus however, I

frequently came across single or two word utterances that consisted solely of a positive interjection (typically

with the word “oh” preceding it) that were clearly sarcastic. This would whoever require that a lexicon of

positive interjections be either incorporated into the classifier, or a study of the most frequently sarcastic

interjections would need to be conducted.

These features could be included into my algorithm in the same way that the punctuation features

currently are: each feature will be normalised to be within the range of 0-1, and utilised as a single feature of

a vector with the same weight as a pattern.

3.6.3  Other Rhetorical Modes

This extension would be the most complex to implement, if it could be at all. As my classifier is

primarily based upon patterns which are learnt from a corpus with a specific target in mind (e.g. irony),

either the classifier would need to be separately trained and tested on a corpus with a different focus, or the

way the sentences are classified would need an overhaul. 

Rhetorical modes that are more explicit in their use would be possible to find, but given a pattern

based classifier, a large extension would need to be implemented. Litotes as an example typically take the

form of utilising a double negative to imply a positive. Similar to how positive interjections would need to be

found,  a  lexicon of  negatives,  complimentary adjectives,  and  possessive  determiners  would  need  to  be

obtained and incorporated into the classifier.  Typical  patterns of litotes such as possessive determiner –

negative - complimentary adjective, could then be searched for.
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4  Results
My human baseline interval was created before analysing the results.  Using two judges, both of

which did not do the initial classification of the test sentences. They achieved a mean accuracy of 68.75%,

and an accuracy of 58.33% where they both agreed when classifying as sarcastic or not.

Sentence Number Human classified level Classifier classified 
level

1 1 1

2 1 3

3 1 2

4 1 4

5 1 2

6 1 2

7 1 1

8 1 3

9 2 1

10 2 4

11 2 3

12 2 2

13 3 2

14 3 1

15 3 2

16 4 1

17 4 1

18 4 3

19 4 3

20 4 3

21 5 4

22 5 2

23 5 3

24 5 1

Using binary classification of whether each sentence is correctly classified as sarcastic (levels 3-5) or

not (levels 1-2), the classifier achieved:

Accuracy Precision Recall F-Score

0.5 0.5 0.417 0.455
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4.1  Comments
These results were very disappointing, given the success Davidov, Tsur and Rappoport had with their

algorithm which mine is based upon; they achieved results of 0.912, 0.756, 0.947, and 0.827 for precision,

recall, accuracy, and F-score respectively, a far cry away from my own results. My own results seem to

consist of primarily level 2's and 3's, over half in fact. This possibly hints at the fact that my classifier is

simply unable to decide and is returning middle of the road results. 

Given that my classifier is based upon their work, I was expecting similar results. With this in mind,

I began investigating why my results were so far off what I predicted.

4.2  Additional Results
Given the disappointing performance I  got  in comparison to the solid results  achieved by SASI

(Davidov, Tsur and Rappoport,  2010) for which my classifier is based on, I decided to investigate what

results I would get by changing the HFW threshold from my original value of greater than 3.

4.2.1  HFW > 2

Sentence Number Human classified level Classifier classified 
level

1 1 1

2 1 3

3 1 1

4 1 4

5 1 2

6 1 2

7 1 2

8 1 3

9 2 2

10 2 3

11 2 3

12 2 2

13 3 2

14 3 2

15 3 3

16 4 2

17 4 1

18 4 3

19 4 2

20 4 2

21 5 4
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22 5 2

23 5 3

24 5 2

Accuracy Precision Recall F-Score

0.458 0.444 0.333 0.381

Lowering the threshold so that more words were HFWs, increasing the number of patterns, 
gave poorer overall performance. 

I next tried raising the threshold to allow fewer HFWs,  which gave fewer patterns.

4.2.2  HFW > 4

Sentence Number Human classified level Classifier classified 
level

1 1 1

2 1 3

3 1 1

4 1 4

5 1 2

6 1 1

7 1 3

8 1 1

9 2 2

10 2 4

11 2 4

12 2 2

13 3 2

14 3 1

15 3 2

16 4 2

17 4 2

18 4 2

19 4 3

20 4 2

21 5 4

22 5 2

23 5 3

24 5 2
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Accuracy Precision Recall F-Score

0.417 0.375 0.25 0.3

This gave even worse results than lowering the threshold, with a significant overall drop in 
performance from the original threshold. I decided to raise it higher again, to see if this decreasing 
trend continued.

4.2.3  HFW > 5

Sentence Number Human classified level Classifier classified 
level

1 1 1

2 1 3

3 1 1

4 1 4

5 1 2

6 1 2

7 1 2

8 1 4

9 2 2

10 2 3

11 2 3

12 2 2

13 3 2

14 3 2

15 3 2

16 4 2

17 4 3

18 4 3

19 4 4

20 4 2

21 5 4

22 5 2

23 5 4

24 5 2

Accuracy Precision Recall F-Score

0.5 0.5 0.417 0.455

Surprisingly, despite having fewer patterns, the same overall results as my initial threshold 
value were achieved by raising the threshold again. With this result, I raised the threshold twice 
more. Unfortunately this did not improve the result any further, with it becoming more apparent that
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my classifier returning results of 2 and 3 for almost all of the sentences.

4.3 Evaluation

As evidenced by my results, my classifier was not capable of distinguishing between sarcastic and

non-sarcastic text gathered from Google Books. The results were worse than my HBI, and far worse than the

original results achieved by Davidov, Tsur and Rappoport (2010). It's worth noting that my HBI comparison

had  quite  a  range  to  it,  10.42%,  again  demonstrating  the  difficulty  of  this  task  for  humans,  let  alone

computational  methods.  This  range  however  is  slightly  biased  in  comparison  to  other,  larger  corpora

however; the small size of the corpus means that even a single disagreement leads to a significant change in

performance.

There are several possible reasons for the disparity present in the results. The first of which is the

size of my corpus. The original corpus used by Davidov, Tsur and Rappoport (2010), before being data

enriched, contained 80 clearly sarcastic sentences to 505 clearly not-sarcastic sentences. Mine in comparison

is smaller, being 100 sarcastic sentences of three levels, and 100 non-sarcastic sentences of 2 levels. SO

while my corpus is more balanced, their corpus is simply bigger, providing more patterns and a greater

opportunity for trends to appear. The SASI classifier utilises a weighted k-nearest neighbours algorithm to

classify sentences as sarcastic or not. The nearest neighbours, as noted in the methodology, are selected by

the best matching patterns. Due to my small corpus, the number of patterns from each sarcasm level were

relatively smaller in comparison to the likely larger number gained by Davidov, Tsur and Rappoport (2010).

This can lead to the problem that even if there are three perfect matches for a vector from the same sarcasm

level, it still has to fill out the other two slots. 

This is leads to another possible reason for my results: insufficient and general patterns. Continuing

with the previous example, the remaining two slots will be the next two closest vectors. The problem comes

about that  the  next  two closest,  given my small  corpus size,  may be very general  vectors  from a very

different sarcasm level. This alone will sway the result, but if the majority of patterns happen to come from

one level, the extra weight from this vector can heavily sway the result towards it if the three matching

vectors belong to a less populated class. Had a larger corpus been used, these general patterns may have lost

out to more specific, matching patterns. 

Observing how my results are produced reveals that though matches are typically being found of the

correct level, there are either not enough similar patterns in that level for enough weight to be given, or that

some sentences give very general patterns which match better than the less similar,  specific ones of the

correct level. This is somewhat apparent in my results, where the majority of the results are classified as

being of class 2 or 3, which can be reads as the classifier being stating that the sentences are probably not or

maybe sarcastic. As stated previously, this is likely the case; when the threshold for HFWs was raised, the

classifier began returning predominantly 2's and 3's. 

Observing  how  these  results  are  being  produced  provides  further  credence  to  this  theory;  the
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majority of patterns are in level 1, with another large chunk in level 2, thus giving vectors from these results

a large weight, swaying results strongly if they are found nearest. This combined with the fact that even

though one or two close matches are found for vectors at the correct level, the other nearest vectors are often

not of the same level, the results typically get swayed  to a middling level.

Another reason that my results may be so different is the difference in corpora used by myself and

Davidov,  Tsur  and Rappoport  (2010).  One reason I  chose Google  Books as  my corpus was to  test  the

classifier on a corpus utilising a different style of text than what it was originally tested on. This is however

rather unlikely,  given the fact  that  the algorithm proved robust  enough to provide solid  results  on both

structured text from Amazon Reviews, and unstructured, free-form text from Twitter. 

What  is  more  likely  is  that  either  the  excerpts  I  extracted  from  Google  Books  are  not  good

representations of sarcasm, or the initial classification of sentences was error prone. There is some evidence

to support this theory; the classifier consistently gets bad results for the sentences classified as level 2. This is

likely  either  a  case  of  the  sentences  being  initially  classified,  or  that  the  patterns  extracted  from the

utterances classified as level 2 bear little similarity to each other, thus causing other sentences to be better

matches.

Given this speculation, it is possible that my classifier itself could accurately distinguish between

sarcastic and non-sarcastic sentences, potentially achieving results similar to those achieved by Davidov,

Tsur and Rappoport (2010). The flaw may only lie with the fact that the classifier requires a large corpus to

function effectively.

4.4  Conclusion
I can conclude from this project, that while it is seemingly possible to distinguish between sarcastic

and non-sarcastic utterances in text,  it  is a difficult  problem, with my own attempt being insufficient to

provide accurate classification. Pattern-based features utilised with clustering appear to be a very strong

predictor of sarcasm, with my own falling short due to a weakness in the design. It would appear from my

evaluation that the failure of my classifier came simply from my small corpus, though given the chance I

would definitely like to run the classifier with a larger corpus to test this theory.

I have met all four of the minimum requirements of the project, with varying degrees of success:

Analysis  of  textual  characteristics  that  correlate  with  sarcasm;  comparison  of  different  approaches;  A

classifier algorithm which given English text input will classify a sentence as being sarcastic or not;  and

Evaluation of results from a corpus. 

Researching  past  work  by  others  provided  me  with  both  a  good  comprehension  of  textual

characteristics associated with sarcasm, and also a comparison of different approaches. The research done on

the lexical and pragmatic aspects of sarcasm, provides both a classification approach, and useful information

about which textual features are effective at distinguishing sarcastic sentences. 
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After comparing the results from the pattern-based approach against the lexical and pragmatic based

approach, would lead to the conclusion that the classification of sarcastic sentences is best served with a

primarily surface-pattern-based approach. An approach that fully merges the solid results achieved by the

surface pattern based classification method, and the strong lexical and pragmatic predictors, would likely

provide the best results at this time.

Though  I  designed  and  created  a  classifier  to  distinguish  between  sarcastic  and  non-sarcastic

sentences, and evaluated it on natural text gathered from a corpus, it proved to be unsuccessful, likely due to

the small size of the corpus. The classifier itself works, with my own testing of dummy sentences proving

that it will  correctly label a sentence as sarcastic if there are enough similar patterns present within the

desired level.

4.4.1 Future Improvements

The first  obvious improvement  would be to  run the classifier  on a  larger  corpus,  to  investigate

whether it was just the size of my corpus, the corpus itself, or something unseen that was to blame for the

failure of my classifier. Either gathering a larger corpus from Google Books, performing my extension of

utilising multiple corpora to gather a diverse range of sentences, or simply using a different, larger corpus

would all  likely lead to improved results.  The data enrichment utilised by Davidov, Tsur and Rappoport

(2010),  given that it  did not negatively affect their  results,  would also likely be a good way to quickly

increase the size of a corpus.

Implementing my other extensions, particularly the extension of searching for smileys and laughter

acronyms given their success, would likely lead to an improvement in the classification, given a larger and

better corpus first of course. Implementing them as described in my methodology, into the feature vector,

would provide each sentence with another feature to look for, potentially overcoming the generalisation of

patterns that my own project would appear to have suffered from.
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5  Project Reflection
Overall I enjoyed the project experience. I have found it very interesting to research a problem that

has not yet been fully solved, on a topic that is largely an unknown field. It has highlighted to myself that

plans are always rough guidelines, due to it being impossible to predict how a project will evolve over a

period of time, or how long certain tasks can take. My background reading is a good example of this, from

my Gantt chart it can be seen that I intended for it to be finished in about 2 weeks time, instead it took me far

longer due to complexity of the problem. This is where utilising an iterative project life cycle as I did comes

in great use; planning for things to be changed is a very good strategy, as it allows you to realise quickly

when you are falling behind schedule and need to take measures to correct.

Despite my implementation of an iterative life cycle, I did fall behind and could not catch back up to

my planned schedule, having to particularly rush the last few sections due to me largely ignoring my own

schedule. Given a second chance, I would ensure that I begin early and keep a strong work pace throughout

and keep to the schedule, rather than working at a fairly leisurely pace, and picking up the pace when a

deadline begins to loom. I would also not only add to the report in small chunks, instead filling it out as I go.

This would facilitate the option of using my supervisor to the fullest, asking for opinions and how to improve

each step of the way, instead of gambling on the presumption that I have already been doing it correctly.
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