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Abstract: Progressive collapse is a failure mode of great concern for tall buildings, and is also typical of building demolitions. The most
infamous paradigm is the collapse of the World Trade Center towers. After reviewing the mechanics of their collapse, the motion during
the crushing of one floor (or group of floors) and its energetics are analyzed, and a dynamic one-dimensional continuum model of
progressive collapse is developed. Rather than using classical homogenization, it is found more effective to characterize the continuum by
an energetically equivalent snap-through. The collapse, in which two phases—crush-down followed by crush-up—must be distinguished,
is described in each phase by a nonlinear second-order differential equation for the propagation of the crushing front of a compacted block
of accreting mass. Expressions for consistent energy potentials are formulated and an exact analytical solution of a special case is given.
It is shown that progressive collapse will be triggered if the total (internal) energy loss during the crushing of one story (equal to the
energy dissipated by the complete crushing and compaction of one story, minus the loss of gravity potential during the crushing of that
story) exceeds the kinetic energy impacted to that story. Regardless of the load capacity of the columns, there is no way to deny the
inevitability of progressive collapse driven by gravity alone if this criterion is satisfied (for the World Trade Center it is satisfied with an
order-of-magnitude margin). The parameters are the compaction ratio of a crushed story, the fracture of mass ejected outside the tower
perimeter, and the energy dissipation per unit height. The last is the most important, yet the hardest to predict theoretically. It is argued
that, using inverse analysis, one could identify these parameters from a precise record of the motion of floors of a collapsing building. Due
to a shroud of dust and smoke, the videos of the World Trade Center are only of limited use. It is proposed to obtain such records by
monitoring (with millisecond accuracy) the precise time history of displacements in different modes of building demolitions. The
monitoring could be accomplished by real-time telemetry from sacrificial accelerometers, or by high-speed optical camera. The resulting
information on energy absorption capability would be valuable for the rating of various structural systems and for inferring their collapse
mode under extreme fire, internal explosion, external blast, impact or other kinds of terrorist attack, as well as earthquake and foundation
movements.
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lapsed due to fire. The fact that the WTC towers did, beckons
deep examination.

In this paper [based on Bazant and Verdure’s (2006) identical
report presented at the U.S. National Congress of Theoretical
and Applied Mechanics, Boulder, Colo., June 26, 2006; and
posted on June 23, 2006, at www.civil.northwestern.edu/people/
bazant.html], attention will be focused on the progressive col-
lapse, triggered in the WTC by fire and previously experienced
in many tall buildings as a result of earthquake or explosions
(including terrorist attack). A simplified one-dimensional analyti-
cal solution of the collapse front propagation will be presented. It
will be shown how this solution can be used to determine the
energy absorption capability of individual stories if the motion
history is precisely recorded. Because of the shroud of dust and
smoke, these histories can be identified from the videos of the
collapsing WTC towers only for the first few seconds of collapse,
and so little can be learned in this regard from that collapse.
However, monitoring of tall building demolitions, which repre-
sent one kind of progressive collapse, could provide such

Introduction

The destruction of the World Trade Center (WTC) on September
11, 2001 was not only the largest mass murder in U.S. history but
also a big surprise for the structural engineering profession, per-
haps the biggest since the collapse of the Tacoma Bridge in 1940.
No experienced structural engineer watching the attack expected
the WTC towers to collapse. No skyscraper has ever before col-
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histories. Development of a simple theory amenable to inverse
analysis of these histories is the key. It would permit extracting
valuable information on the energy absorption capability of vari-
ous types of structural systems in various collapse modes, and is,
therefore, the main objective of this paper.



Many disasters other than the WTC attest to the danger of
progressive collapse, e.g., the collapse of Ronan Point apartments
in the United Kingdom in 1968 (Levy and Salvadori 1992), where
a kitchen gas explosion on the 18th floor sent a 25-story stack of
rooms to the ground; the bombing of the Murrah Federal Building
in Oklahoma City, Okla., in 1995, where the air blast pressure
sufficed to take out only a few lower floors, whereas the upper
floors failed by progressive collapse; the 2000 Commonwealth
Ave. tower in Boston in 1971, triggered by punching of insuffi-
ciently hardened slab; the New World Hotel in Singapore; many
buildings in Armenia, Turkey, Mexico City, and other earth-
quakes, etc. A number of ancient towers failed in this way,
too, e.g., the Civic Center of Pavia in 1989 (Binda et al. 1992);
the cathedral in Goch, Germany; the Campanile in Venice in
1902, etc. (Heinle and Leonhardt 1989), where the trigger was
centuries-long stress redistribution due to drying shrinkage and
creep (Ferretti and Bazant 2006a,b).

Review of Causes of WTC Collapse

Although the structural damage inflicted by aircraft was severe, it
was only local. Without stripping of a significant portion of the
steel insulation during impact, the subsequent fire would likely
not have led to overall collapse (Bazant and Zhou 2002a; NIST

2005). As generally accepted by the community of specialists in

structural mechanics and structural engineering (though not by a

few outsiders claiming a conspiracy with planted explosives), the

failure scenario was as follows:

1. About 60% of the 60 columns of the impacted face of framed
tube (and about 13% of the total of 287 columns) were sev-
ered, and many more were significantly deflected. This
caused stress redistribution, which significantly increased the
load of some columns, attaining or nearing the load capacity
for some of them.

2. Because a significant amount of steel insulation was stripped,
many structural steel members heated up to 600°C, as con-
firmed by annealing studies of steel debris (NIST 2005) [the
structural steel used loses about 20% of its yield strength
already at 300°C, and about 85% at 600°C (NIST 2005);
and exhibits significant viscoplasticity, or creep, above
450°C (e.g., Cottrell 1964, p. 299), especially in the columns
overstressed due to load redistribution; the press reports right
after September 11, 2001 indicating temperature in excess of
800°C, turned out to be groundless, but Bazant and Zhou’s
analysis did not depend on that].

3. Differential thermal expansion, combined with heat-induced
viscoplastic deformation, caused the floor trusses to sag. The
catenary action of the sagging trusses pulled many perimeter
columns inward (by about 1 m, NIST 2005). The bowing of
these columns served as a huge imperfection inducing mul-
tistory out-of-plane buckling of framed tube wall. The lateral
deflections of some columns due to aircraft impact, the dif-
ferential thermal expansion, and overstress due to load redis-
tribution also diminished buckling strength.

4. The combination of seven effects—(1) Overstress of some
columns due to initial load redistribution; (2) overheating
due to loss of steel insulation; (3) drastic lowering of yield
limit and creep threshold by heat; (4) lateral deflections of
many columns due to thermal strains and sagging floor
trusses; (5) weakened lateral support due to reduced in-plane
stiffness of sagging floors; (6) multistory bowing of some
columns (for which the critical load is an order of magnitude
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Fig. 1. Scenario of progressive collapse of the World Trade Center
towers

less than it is for one-story buckling); and (7) local plastic
buckling of heated column webs—finally led to buckling of
columns [Fig. 1(b)]. As a result, the upper part of the tower
fell, with little resistance, through at least one floor height,
impacting the lower part of the tower. This triggered progres-
sive collapse because the kinetic energy of the falling upper
part exceeded (by an order of magnitude) the energy that
could be absorbed by limited plastic deformations and frac-
turing in the lower part of the tower.

In broad terms, this scenario was proposed by Bazant (2001),
and BaZant and Zhou (2002a,b) on the basis of simplified analysis
relying solely on energy considerations. Up to the moment of
collapse trigger, the foregoing scenario was identified by meticu-
lous, exhaustive, and very realistic computer simulations of
unprecedented detail, conducted by S. Shyam Sunder’s team at
NIST. The subsequent progressive collapse was not simulated at
NIST because its inevitability, once triggered by impact after col-
umn buckling, had already been proven by Bazant and Zhou’s
(2002a) comparison of kinetic energy to energy absorption capa-
bility. The elastically calculated stresses caused by impact of the
upper part of tower onto the lower part were found to be 31 times
greater than the design stresses (note a misprint in Eq. 2 of Bazant
and Zhou 2002a: A should be the combined cross section area of
all columns, which means that Eq. 1, rather than 2, is decisive).

Before disappearing from view, the upper part of the South
tower was seen to tilt significantly (and of the North tower
mildly). Some wondered why the tilting [Fig. 1(d)] did not con-
tinue, so that the upper part would pivot about its base like a
falling tree [see Fig. 4 of BaZant and Zhou (2002b]. However,
such toppling to the side was impossible because the horizontal
reaction to the rate of angular momentum of the upper part would
have exceeded the elastoplastic shear resistance of the story at
least 10.3X (BaZant and Zhou 2002b).

The kinetic energy of the top part of the tower impacting the
floor below was found to be about 8.4X larger than the plastic
energy absorption capability of the underlying story, and con-
siderably higher than that if fracturing were taken into account
(Bazant and Zhou 2002a). This fact, along with the fact that
during the progressive collapse of underlying stories [Figs. 1(d)
and 2] the loss of gravitational potential per story is much greater
than the energy dissipated per story, was sufficient for Bazant and
Zhou (2002a) to conclude, purely on energy grounds, that the
tower was doomed once the top part of the tower dropped through
the height of one story (or even 0.5 m). It was also observed that
this conclusion made any calculations of the dynamics of progres-
sive collapse after the first single-story drop of upper part super-
fluous. The relative smallness of energy absorption capability
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Fig. 2. Continuum model for propagation of crushing (compaction)
front in progressive collapse

compared to the kinetic energy also sufficed to explain, without
any further calculations, why the collapse duration could not have
been much longer (say, twice as long or more) than the duration
of a free fall from the tower top.

Therefore, no further analysis has been necessary to prove that
the WTC towers had to fall the way they did, due to gravity alone.
However, a theory describing the progressive collapse dynamics
beyond the initial trigger, with the WTC as a paradigm, could
nevertheless be very useful for other purposes, especially for
learning from demolitions. It could also help to clear up misun-
derstanding (and thus to dispel the myth of planted explosives).
Its formulation is the main objective of what follows.

Motion of Crushing Columns of One Story
and Energy Dissipation

When the upper floor crashes into the lower one, with a layer of
rubble between them, the initial height /4 of the story is reduced to
N\h, with \ denoting the compaction ratio (in finite-strain theory, A
is called the stretch). After that, the load can increase without
bounds. In a one-dimensional model pursued here, one may use
the following estimate:

)\=(1_Kout)V1/VO (1)

where V(=initial volume of the tower; V; = volume of the rubble
on the ground into which the whole tower mass has been com-
pacted, and k,,=correction representing mainly the fraction of
the rubble that has been ejected during collapse outside the pe-
rimeter of the tower and thus does not resist compaction. The
rubble that has not been ejected during collapse but was pushed
outside the tower perimeter only after landing on the heap on the
ground should not be counted in k.. The volume of the rubble
found outside the footprint of the tower, which can be measured
by surveying the rubble heap on the ground after the collapse, is
an upper bound on V|, but probably much too high a bound for
serving as an estimate.

The mass of columns is assumed to be lumped, half and half,
into the mass of the upper and lower floors. Let u# denote the
vertical displacement of the top floor relative to the floor below
(Figs. 3 and 4), and F(u) the corresponding vertical load that all
the columns of the floor transmit. To analyze progressive col-
lapse, the complete load-displacement diagram F(u) must be
known (Figs. 3 and 4 top left). It begins by elastic shortening and,
after the peak load F, curve F(u) steeply declines with u due to
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plastic buckling, combined with fracturing (for columns heated
above approximately 450°C, the buckling is viscoplastic). For
single column buckling, the inelastic deformation localizes into
three plastic (or softening) hinges (Sec. 8.6 in Bazant and Cedolin
2003; see Figs. 2b,c and 5b in Bazant and Zhou 2002a). For
multistory buckling, the load-deflection diagram has a similar
shape but the ordinates can be reduced by an order of magnitude;
in that case, the framed tube wall is likely to buckle as a plate,
which requires four hinges to form on some columns lines and
three on others (see Fig. 2¢ of Bazant and Zhou). Such a buckling
mode is suggested by photographs of flying large fragments of the
framed-tube wall, which show rows of what looks like broken-off
plastic hinges.

Deceleration and Acceleration during the Crushing
of One Story

The two intersections of the horizontal line F=gm(z) with the
curve F(u) seen in Figs. 3 and 4(a) (top) are equilibrium states
(there is also a third equilibrium state at intersection with the
vertical line of rehardening upon contact). But any other state on
this curve is a transient dynamic state, in which the difference
from the line F=gm(z) represents the inertia force that must be
generated by acceleration or deceleration of the block of the
tower mass m(z) above level z (i.e., above the top floor of the
story).

Before being impacted by the upper part, the columns are in
equilibrium, i.e., F(uy)=gm(z), where uy=initial elastic shorten-
ing of columns under weight gm(z) (about 0.00054 or 1.8 mm).
At impact, the initial condition for subsequent motion is velocity
vo=u(uy) =v;=velocity of the impacting block of upper part of
the tower. Precisely, from balance of linear momentum upon im-
pact, vy=m(z)/[m(z)+my], but this is only slightly less than v,
because my<<m(z) (mp=mass of the impacted upper floor).

When F(u) # gm(z), the difference F(u)—gm(z) causes decel-
eration of mass m(z) if positive (AF,; in Fig. 3) and acceleration if
negative (AF, in Fig. 3). The equation of motion of mass m(z)
during the crushing of one story (or one group of stories, in the
case of multistory buckling) reads as follows:

i =g = F(u)/m(z) ()

where z=constant=coordinate of the top floor of the story, and
superior dots denote derivatives with respect to time . So, after
impact, the column resistance causes mass m(z) to decelerate, but
only until point u,. at which the load-deflection diagram intersects
the line F=gm(z) [Figs. 3 and 4(a)]. After that, mass m(z) accel-
erates until the end of column crushing.
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If the complete function F(u) is known, then the calculation
of motion of the upper part of the tower from Eq. (2) is easy
(to calculate this function precisely is a formidable problem, but
an upper bound curve is easy to figure out from plastic hinges,
Bazant and Zhou 2002a). Examples of evolution of velocity v
=u, accurately computed from Eq. (2) for various load-
displacement diagrams graphically defined in the top row of Fig.
4(a), are shown in rows 2 and 3 of Figs. 4(a—c).

Energy Criterion of Progressive Collapse Trigger

The energy loss of the columns up to displacement u is

¢(u)=f [F(u") - gm(z)]du’" = W(u) — gm(z)u 3)

W(u):f F(u'")du' (4)

o

where z=constant=column top coordinate, W(u)=energy dissi-
pated by the columns=area under the load-displacement diagram
(Fig. 3) and —gm(z)u=gravitational potential change causing an
increment of kinetic energy of mass m(z). Note that, since the
possibility of unloading [Fig. 4(c) top] can be dismissed, W(u) is
path independent and thus can be regarded, from the thermody-
namic viewpoint, as the internal energy, or free energy, for very
fast (adiabatic), or very slow (isothermal) deformations, and thus
®(u) represents the potential energy loss. If F(u)<gm(z) for all
u, ®(u) continuously decreases. If not, then ®(u) first increases
and then decreases during the collapse of each story. Clearly,
collapse will get arrested if and only if the kinetic energy does not
suffice for reaching the interval of accelerated motion, i.e., the
interval of decreasing ®(u), i.e., Fig. 4, right column. So, the
crushing of columns within one story will get arrested before
completion [Fig. 4(c)] if and only if

K<W, (5)

where W,=®(u,.)=W(u,)—gm(z)u.=net energy loss up to u, dur-
ing the crushing of one story, and K=kinetic energy of the im-
pacting mass m(z). This is the criterion of preventing progressive
collapse from starting [Fig. 4(c)]. Its violation triggers progres-
sive collapse.

Graphically, this criterion means that X must be smaller than
the area under the load-deflection diagram lying above the hori-
zontal line F=gm(z) (Figs. 3 and 4 right column). If this condi-
tion is violated, the next story will again suffer an impact and the
collapse process will get repeated.

The next story will be impacted with higher kinetic energy if
and only if

w,>W, (6)
where W,= gm(z)u/:loss of gravity when the upper part of the
tower is moved down by distance ug; uy=(1-N\)h=final displace-
ment at full compaction; and W,=W(u,)=[/F(u)du=area under
the complete load-displacement curve F(u) (Fig. 3). This is the
criterion of accelerated collapse.

For the WTC, it was estimated by BaZzant and Zhou (2002a)
that I~ 8.4W,> W, for the story where progressive collapse ini-
tiated. As W, was, for the WTC, greater than w, by an order of
magnitude, acceleration of collapse from one story to the next
was ensured.

Some critics have been under the mistaken impression that
collapse cannot occur if (because of safety factors used in design)
the weight mg of the upper part is less than the load capacity F,
of the floor. This led them to postulate various strange ideas (such
as “fracture wave” and planted explosives). However, the crite-
rion in Eq. (5) makes it clear that this impression is erroneous. If
Eq. (5) is violated, there is (regardless of F;)) no way to deny the
inevitability of progressive collapse driven only by gravity.
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Options for Transition to Global Continuum Model

One option would be finite element simulation based on the tra-
ditional homogenization of heterogeneous microstructure of the
tower, in which the load-displacement curve F(u) in Fig. 3 would
be converted to an averaged stress-strain curve o(e) by setting
e=u/h and o=F/A (A=cross-section area of the tower). How-
ever, the stress-strain relation delivered by this standard homog-
enization approach would exhibit strain softening, which causes
spurious strain localization instability and in dynamics leads to
an ill-posed problem, whose mathematical solution exists but
is physically wrong (BaZant and Belytchko 1985; BaZant and
Cedolin 2003, Sec. 13.1). To obtain a well-posed formulation, it
would be necessary to regularize the initial-boundary value prob-
lem by introducing a nonlocal formulation (Bazant and Jirdsek
2004; Bazant and Cedolin 2003, Chap. 13) with a characteristic
length equal to the story height & (such regularization, along with
a characteristic length and the associated size effect, was forgot-
ten in the “fracture wave” theory, proposed as an alternative ex-
planation of the WTC collapse). But the nonlocal approach would
be complex to program, while gradual strain softening need not
be modeled because only the total energy release per story is
important (as evidenced, in rows 2 and 3 of Fig. 4, by equivalence
of velocity diagrams).

In the dynamic setting, though, there is another, more effec-
tive, option: A nonsoftening energetically equivalent characteriza-
tion of snapthrough in discrete elements—the individual failing
stories. This option is pursued next. It corresponds to nonstandard
homogenization, in which the aim is not homogenized stiffness
but homogenized energy dissipation (this approach is analogous
to the energetically equivalent transition in the van der Waals
theory of gas-liquid phase changes, and the energy equivalence is
also analogous to the crack band model for softening distributed
damage (BaZant and Cedolin 2003; BaZant and Jirdsek 2002).

Energetically Equivalent Mean Crushing Force

For the purpose of continuum smearing of a tower with many
stories, the actual load-displacement diagram F(z) [curve OABC
in Fig. 2(a)] can be replaced by a simple diagram that is story-
wise energetically equivalent, and is represented by the horizontal
line F=F,. Here F, is the mean crushing force (or resistance) at
level z, such that the dissipated energy per story, represented by
the rectangular area under the horizontal line F=F,, is equal to
the total area W, under the actual load-displacement curve
OABC, i.e.

w, 1 (%
F.=—2=—| F(u)du (7)
g UsJy

The energy-equivalent replacement avoids unstable snapthrough
(Bazant and Cedolin 2003) (and is analogous to what is in physics
of phase transitions called the Maxwell line). Although the dy-
namic u(¢) history for the replacement F, is not the same as for
the actual F(u), the final values of displacement u and velocity
at the end of crushing of a story are exactly the same, as shown in
the exactly calculated diagrams in rows 2 and 3 of Fig. 4. So the
replacement has no effect on the overall change of velocity v of
the collapsing story from the beginning to the end of column
crushing (Fig. 4), i.e., from u=0 to u=u, (as long as F is not
large enough to arrest the downward motion). F, may also be
regarded as the mean energy dissipated per unit height of the
tower, which has the physical dimension of force.
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Note that it would be slightly more accurate not to include the
minuscule elastic strain-energy portion of W, in integral (7, ie.,
replace the lower limit O with u,. But then, instead of constant F',
we would need to consider an elastic-perfectly plastic force-
displacement relation, which would complicate analysis but make
almost no difference. The steep elastic stress rise from u=0 to u,
(Fig. 4) produces elastic waves which do not significantly inter-
fere with the crushing process, as explained later.

One-Dimensional Continuum Model for Crushing
Front Propagation

Detailed finite element analysis simulating plasticity and break-up
of all columns and beams, and the flight and collisions of broken
pieces, would be extremely difficult, as well as unsuited for ex-
tracting the basic general trends. Thus it appears reasonable to
make four simplifying hypotheses: (1) The only displacements are
vertical and only the mean of vertical displacement over the
whole floor needs to be considered. (2) Energy is dissipated only
at the crushing front (this implies that the blocks in Fig. 2 may be
treated as rigid, i.e., the deformations of the blocks away from the
crushing front may be neglected). (3) The relation of resisting
normal force F (transmitted by all the columns of each floor) to
the relative displacement u between two adjacent floors obeys a
known load-displacement diagram (Fig. 4), terminating with a
specified compaction ratio A (which must be adjusted to take into
account lateral shedding of a certain known fraction of rubble
outside the tower perimeter). (4) The stories are so numerous, and
the collapse front traverses so many stories, that a continuum
smearing (i.e., homogenization) gives a sufficiently accurate over-
all picture.

The one-dimensionally idealized progress of collapse of a tall
building (of initial height H) is shown in Fig. 2, where ¢,
m=coordinates measured from the initial and current tower top,
respectively; z(7), y(r)=coordinates { and m of the crushing front
at time ¢ ({ is the Lagrangian coordinate of material points in the
sense of finite strain theory, whereas y is measured from the
moving top of the building). The initial location of the first floor
crashing into the one below is at {=z=z,=Y,. The resisting force
F and compaction ratio A are known functions of z. A and C label
the lower and upper undisturbed parts of the tower, and B the
zone of crushed stories compacted from initial thickness s, to the
current thickness

2(1)
s(1) = f AMO)dL ()
(=29

When p=constant, s()=\[z()—z,] where z(z)—z,=distance that
the crushing front has traversed through the tower up to time 7.
The velocity of the upper part of the tower is

v(®) =[1-N2)J(®) )

First it needs to be decided whether crushed Zone B will
propagate down or up through the tower. The equation of motion
of Zone B requires that

Fi—Fy=\so[pg = (nv)’] (10)

where F| and F, are the normal forces (positive for compression)
acting on the top and bottom of the compacted Zone B [Fig. 2(c)].
This expression is positive if Zone B is falling slower than a free
fall, which is reasonable to expect and is confirmed by the solu-
tion to be given. Therefore F, <F; always. So, neither upward,



nor two-sided simultaneous, propagation of crushing front is
possible.

This is true, however, only for a deterministic theory. A front
propagating intermittently up and down would nevertheless
be found possible if F,(z) were considered to be a random (auto-
correlated) field. In that case, short intervals At may exist in
which the difference F,.;—F,., of random F, values at the bottom
and top of crushed Block B would exceed the right-hand side
of Eq. (10). During those short intervals, crush-up would
occur instead of crush-down, more frequently for a larger co-
efficient of variation. The greater the value of s, the larger the
right-hand side of Eq. (10), and thus the smaller the chance of
crush-up. So, random crush-up intervals could be significant only
at the beginning of collapse, when s is still small enough. Sto-
chastic analysis, however, would make little difference overall
and is beyond the scope of this paper.

The phase of downward propagation of the front will be called
the crush-down phase, or Phase I [Fig. 4(b)]. After the lower
crushing front hits the ground, the upper crushing front of the
compacted zone can begin propagating into the falling upper part
of the tower [Fig. 4(d)]. This will be called the crush-up phase, or
Phase II (it could also be called the “demolition phase,” because
demolitions of buildings are usually effected by explosive cutter
charges placed at the bottom).

Let p=p({)=initial mass density at coordinate {=continu-
ously smeared mass of undisturbed tower per unit height. The
mass density of the compacted Zone B is mu(z)/\(z) (>p). How-
ever, a correction must be made for the fraction Kk, of the mass
that is being lost at the crushing front, ejected into the air outside
the perimeter of the tower. During crush-down, the ejected mass
alters the inertia and weight of the moving compacted Part B,
which requires a correction to m(z), whereas during crush-up no
correction is needed because Part B is not moving. Accordingly,
we adjust the definition of the inertial mass of the tower above
level z in the crush-down phase as follows:

For z>zo:  m(z) =m(z) + f (1 = ko p(8)dg

m(zy) = f p(0)dg (11)
0

No adjustment is needed for the crush-up phase because Block B
of compacted rubble does not move with C but is stationary.

Differential Equations of Progressive Collapse
or Demolition

The differential equations for z(7) and y(¢) can be obtained from
dynamic free body diagrams [Fig. 2(h)]. In the crush-down phase,
the compacted Zone B and the upper Part A of the tower move
together as one rigid body accreting mass, with combined mo-
mentum (1-N\)m(z)z. The negative of the derivative of this
momentum is the upward inertia force. Additional vertical forces
are weight m(z)g downward, and resistance F,(z) upward. The
condition of dynamic equilibrium according to the d’Alembert
principle yields the following differential equation for compac-
tion front propagation in the crush-down Phase I of progressive
collapse:

d%{m(z)[l - )\(z)]%} -m(z)g=-F.(z) (crush-down)

(12)

For the special case of A=F =k, =0 and m(z)=p=constant, Eq.
(12) reduces to (zz) =gz [the numerical solution for this special
case was presented by Kausel (2001)].

The initial conditions for the crush-down Phase I are z=z,
and 7=0. Downward propagation will start if and only if

m(zo)g > F(zo) (13)

In the crush-up phase, the crushing front at m=y is moving up
with velocity \(y)y, and so the downward momentum of Part C is
m(y)[1-N\(y)]y. Downward acceleration of Part C is opposed by
upward inertia force

FE=—{mO)[1 -\ (14)

By contrast to the crush-down phase, the compacted Zone B with
accreting mass is not moving with Part C but is now stationary
[Fig. 4(d)], and this makes a difference. During every time incre-
ment d¢, the momentum

dp =[p(y) ()1 = N(y)]y (15)

of the infinitesimal slice dy=ydr at the crushing front gets re-
duced to 0 (y<0). So, the stationary Part B is subjected to down-
ward inertia force [Fig. 4(g)]:

F} =dp/dr=p(y)[1 -]y (16)

(this is a similar phenomenon as, in the kinetic theory of gases,
the pressure of gas molecules hitting a wall). As a reaction,
the same force acts upward from Part B onto Part C. Adding
also the force of gravity (and noting that y<<0, y<0), the
dynamic equilibrium of Part C as a free body requires that
FB—FC—m(y)g+F,=0. This yields the following differential
equation for compaction front propagation in the crush-up phase
of progressive collapse:

m(y){i[[l . A(y)]%] +g} _F.(y) (crushup)  (17)

For the special case of A=F,=0 and constant w (for which
m=pwy), Eq. (17) reduces to y=—g, which is the equation of free
fall of a fixed mass.

For the special case when only \ is constant while F.(y) and
w(y) vary, Eq. (17) reduces to

¥=-80), &) =[g-F.(/m) 1=\ (18)

This is equivalent to a fall under variable gravity acceleration
&(y). Obviously, the collapse will accelerate (for A #0) only
as long as >0, ie., if condition (13) is satisfied. Since
lim,_,gm(y) =0, this condition will always become violated before
collapse terminates (unless F.=0), and so the collapse must
decelerate at the end.

For F.>0, the tower can in fact never collapse totally, i.e.,
y=0 cannot be attained. To prove it, consider the opposite,
i.e., y—0. Then y=C/y where C=F_./n(1-\)=constant>0;
hence (y?)'=2yyj=2Cy/y, the integration of which gives
¥2=2C1In(y/C,) where C, is a constant. The last equation cannot
be satisfied for y— 0 because the left-hand side=0 whereas the
right-hand side — —. Q.E.D.
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Fig. 5. Sequence of column failures and crushing resistance
representing the mean energy dissipation

As the rubble height approaches its final value, i.e., for
lim,_=y/(>0), the values of m,\,F.. are nearly constant, and so
y=(F./m-g)/(1-\)=Cy=constant [>0 which is again condi-
tion (13)]. Hence, y=C,, which gives y(1)—y;=Co(r— tf) . So, if
F.>0, the collapse history y(z) will terminate asymptotically as a
parabola at some finite height y; and finite time ¢,.

For a more detailed simulation of collapse, it would be
possible to use for each story Eq. (2) for motion within a story,
or introduce into Egs. (12) and (17) a function F,.(z) varying
within each story height as shown by the actual response curves
in Figs. 4 and 5. This would give a fluctuating response with
oscillations superposed on the same mean trend of z(z) or y(r) as
that for smooth F(z). Little would be gained since the mean trend
is what is of interest. Extremely small time steps would be needed
in this case.

The fact that F, is smaller in the heated story than in the cold
stories may be taken into account by reducing F.(z) within a
certain interval z € (z4,7;).

The initial conditions for the crush-up Phase II are y=y,=z,
and a velocity y equal to the terminal velocity of the crush-down
phase. For a demolition, triggered at the base of building, the
initial conditions are y=y, and y=0, while F.=0 for the y value
corresponding to the ground story height.

If the trigger is an explosion or vertical impact, the present
formulation might be used with an initial condition consisting of
a certain finite initial velocity v,. In that case, K in collapse
trigger criterion (5) may be replaced by energy imparted by the
explosion.

Dimensionless Formulation

To convert the formulation to a dimensionless form, note that
the solution can be considered to be a function of two co-
ordinates, ¢+ and z (or y), and six independent parameters,
H, zy, g, F., n(z), Mz), and involves three independent
dimensions, the mass, length, and time. According to the Vashy-
Buckingham theorem, the solution must depend on only
7+2-3=6 dimensionless independent parameters, of which two
are the dimensionless time and spatial coordinate. They may be
chosen as follows:
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t=t\Ng/H, Z=zHorY=y/H, Zy=zJH=y/H
(19)
F(2)=F2)IMg, m(Z)=m()IM, \=\2)

where M =m(H)=total mass of the tower. After transformation
to these variables, the differential equations of the problem,
Egs. (12) and (17), take the following dimensionless forms:

i{[1 - )\(Z)]ni(Z)d—Z} —-im(Z)=-F.(Z) (crush-down)
dr dr

(20)

m(Y){ [[1 - )\(Y)]—] + 1} =F.Y) (crush-up) (21)

The dimensionless form of the initial conditions is obvious.

In the special case of constant p and \, we have m(Z)=Z,
m(Y)=Y, and the foregoing dimensionless differential equations
take the form

(1-N(ZZ+7*)-Z=-F.Z) (crush-down) (22)

(1-N)YY+Y=F.(Y) (crush-up) (23)

Numerical Solution and Parametric Study

Eq. (12) may be converted to a system of two first-order dif-
ferential equations of the form 7=x and x=F(x,z), with pre-
scribed values of z and x as the initial conditions. This system
can be easily solved by some efficient standard numerical algo-
rithm, such as the Runge-Kutta method. The same is true for
Eq. (17).

The diagrams in Fig. 6 present the collapse histories computed
for the approximate parameters of the WTC (heavy solid curves)
and for modified values of these parameters. For comparison,
the curve of free fall from the tower top is shown in each diagram
as the leftmost curve. The transition from the crush-down Phase I
to the crush-up Phase II is marked in each diagram (except one)
by a horizontal line. The parameter values used for calculation,
which are listed in each diagram, were chosen as the typical

values for the WTC and their variations. V_Vf denotes the mean

of a linearly varying crushing energy W, Since the story to

collapse first was heated, the value of F,. within the interval of

z corresponding to the height of that story was reduced to one

half. Fig. 7 shows separately the histories of the tower top co-

ordinate for the crush-up phase alone, which is the case of demo-
lition. Four characteristics of the plots of numerical results in

Figs. 6 and 7 should be noticed:

1. Varying the building characteristics, particularly the crushing
energy W, per story, makes a large enough difference in re-
sponse to be easily detectable by the monitoring of collapse.

2. The effect of crushing energy W, on the rate of progressive
collapse is much higher than the effect of compaction ratio A
or specific mass . This means that these two parameters
need not be estimated very accurately in advance of inverse
analysis.

3. For a structural system such as the WTC, the energy dissipa-
tion capacity required to arrest the collapse after a drop of
one story [Fig. 6(e)] would have to be an order of magnitude
higher than it was.
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Fig. 6. History of the tower top coordinate for parameter values typical of WTC (bold curves) and their variations of different kind

4. For the typical WTC characteristics, the collapse takes about What Can We Learn?—Proposal for Monitoring
10.8 s (Fig. 6 top left), which is not much longer (precisely Demolitions
only 17% longer) than the duration of free fall in vacuum
from the tower top to the ground, which is 9.21 s [the dura- We have seen that the main unknown in predicting cohesive
tion of 10.8 s is within the range of BaZant and Zhou’s collapse is the mean energy dissipation W, per story. The vari-
(2002a) crude estimate]. For all of the wide range of param- able w(z) is known from the design, and the contraction ratio \(z)
eter values considered in Fig. 6, the collapse takes less than can be reasonably estimated from Eq. (1) based on observing
about double the free fall duration. the rubble heap after collapse. But a theoretical or computa-
The last two points confirm Bazant and Zhou’s (2002a) obser- tional prediction of F. is extremely difficult and fraught with
vations about collapse duration made on the basis of initial kinetic uncertainty.
energy and without any calculation of collapse history. Egs. (12) and (17) show that F.(z) can be evaluated from
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precise monitoring of motion history z(z) and y(r), provided
that w(z) and A\(z) are known. A millisecond accuracy for
z(r) or y(r) would be required. Such information can, in the-
ory, be extracted from a high-speed camera record of the col-
lapse. Approximate information could be extracted from a
regular video of collapse, but only for the first few seconds
of collapse because later all of the moving part of the WTC
towers became shrouded in a cloud of dust and smoke (the vi-
sible lower edge of the cloud of dust and debris expelled from
the tower was surely not the collapse front but was moving
ahead of it, by some unknown distance). Analysis of the record of
the first few seconds of collapse (NIST 2005) is planned, but
despite thousands of videos, not much can be learned from the
WTC.

However, valuable information on the energy dissipation ca-
pacity of various types of structural systems could be extracted by
monitoring demolitions. During the initial period of demolition,
the precise history of motion of building top could be determined
from a high-speed camera record. After the building disappears in
dust cloud, various remote sensing techniques could be used. For
example, one could follow through the dust cloud the motion of
sacrificial radio transmitters. Or one could install sacrificial accel-
erometers monitored by real-time telemetry. From the accelera-
tion record, the y(¢) history could be integrated.

Therefore, monitoring of demolitions is proposed as a means
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of learning about the energy absorption capacity of various struc-
tural systems.

Usefulness of Varying Demolition Mode

Ronan Point apartments, the Oklahoma City bombing, etc., dem-
onstrate that only a vertical slice of building may undergo pro-
gressive collapse, whereas the remainder of the building stands.
Such a collapse is truly a three-dimensional problem, much
harder to analyze, but some cases might allow adapting the
present one-dimensional model as an approximation. For ex-
ample, in Ronan Point apartments, energy was dissipated not only
by vertical crushing of stories, but also by shearing successive
floor slabs from their attachments to columns on the side of the
collapsing stack of rooms. The present model seems usable if the
energy dissipated by shearing is added to the crushing energy F,
and if the rotational kinetic energy of floor slabs whose fall is
hindered on one side by column attachments is taken into ac-
count. Such a generalization of the present model could be cali-
brated by comparing data from two different demolition modes:
(1) the usual mode, in which the building is made to collapse
symmetrically, and (2) another mode in which only a vertical slice
of building (e.g., one stack of rooms) is made to collapse by
asymmetrically placed cutter charges. Many variants of this kind
may be worth studying.



Complex Three-Dimensional Situations

Situations such as stepped tall buildings call for three-
dimensional analysis. Large-scale finite-strain computer simula-
tion tracking the contacts of all the pieces of crushing floors
and columns could in principle do the job but would be extra-
ordinarily tedious to program and computationally demanding.
The present analysis would be useful for calibrating such a com-
puter program.

Massive Structures

Progressive collapse is not out of the question even for the mas-
sive load-bearing concrete cores of the tallest recent skyscrapers,
as well as for tall bridge piers and tall towers of suspension or
cable-stayed bridges (that such a collapse mode is a possibility is
documented, e.g., by the collapses of Campanile in Venice and
Civic Center tower in Pavia). Although progressive collapse of
the modern massive piers and towers would be much harder to
initiate, a terrorist attack of sufficient magnitude might not be
inconceivable. Once a local damage causes a sufficient downward
displacement of the superior part of structure, collapse is unstop-
pable. One question, for instance, is whether it might be within
the means of a terrorist to cause, e.g., the formation and slipping
of an inclined band of vertical splitting cracks typical of compres-
sion fracture of concrete. In this regard, note that the size effect in
compression fracture (Cusatis and Bazant 2006) would assist a
terrorist.

Alternative Formulations, Extensions, Ramifications

Alternative Derivation

A more elementary way to derive the differential equation for
the crush-up phase is to calculate first the normal force N(v)
(positive if tensile) in a cross section of any coordinate
m e (0,y) [Fig. 4(h)]. The downward velocity of Block C is
v=[1-\(y)]y, and its acceleration is opposed by inertia force
[1=N(y)]ym(n). The downward gravity force on this block is
gm(m). From dynamic equilibrium, the normal force N(m) (posi-
tive if tensile), acting at the lower face m of this block, is

N(n) =—[1-\(y)]ym(n) + gm(xn) (24)

For the crushing front, =y, this must be equal to the crushing
force, i.e., N(y)=—F_.(y). This immediately verifies Eq. (17).

For the crush-down phase, the same expression holds for the
cross section force N({). However, in the dynamic equilibrium
condition of Block C, one must add upward inertia force w(z)z>
needed to accelerate from O to 7 the mass that is accreting to
Block C per unit time. This then verifies Eq. (12).

Potential and Kinetic Energies

An energy based formulation is useful for various approxima-
tions, numerical algorithms, and bounds. It is slightly complicated
by the accretion of mass to the moving block and the dissipation
of energy by crushing force F,.

Consider first the crush-down phase. Since unloading of
columns does not occur, a potential IT can be defined as the gra-
vitational potential minus the work of F.. Its rate is

I1
B r Lz - gtz 2s)

Due to accretion of mass to the moving block, its kinetic energy
m(z)v?/2 is increased by the kinetic energy due to accelerating
every infinitesimal slice dz=zdr of mass m'(z)(zdr) to velocity v.
This means that kinetic energy increment (1/2)[m’(z)(zdf)Jv? is
added during every time increment dr. So, the rate of added ki-
netic energy is (1/2)m’(z)7v?, and the overall rate of change of
kinetic energy K is

dk@ d

dta

{%m[z(t)]vz(t)} . %m'(z)#(z)dfi—(t” (26)

where m’(z)=dm(z)/dz (this would be equal to w(z) if k., were
0). Conservation of energy requires the sum of the last two energy
rates to vanish. This condition yields

m(0s + S Q% + 2 m' D27+ [F) -~ gm(@) =0

(27)

Dividing this equation by mass velocity v and setting

v=(1-\)z, we find that Eq. (17) ensues. This verifies correctness

of the foregoing energy expressions for the crush-down phase.
For the crush-up phase, the rate of energy potential is

m
dd_t(t) ={gmly(0] - F[y(®)Tv() (28)

In formulating the kinetic energy, there is a difference from crush-
down: The mass of each infinitesimal slice dy=ydr is, during dr,
decelerated from velocity v to 0, removed from the moving Block
C, and added to the stationary Block B. By analogous reasoning,
one gets for the kinetic energy rate the following expression:

K@ d {1 dy(7)

m[y(t)]vz(t)} - %u[y(t)]vz(t)— (29)

dr dr|2 dr
where w(y)=m’'(y). Energy conservation dictates that the sum of

the last two energy rate expressions must vanish, and so

m(y)vv + %M(y)vzy' - %M(y)y'v2 +[gm(z) = F(2)Jv=0

(30)

After division by v=(1-\)y, Eq. (12) for the crush-up phase is
recovered. This agreement verifies the correctness of the fore-
going energy rate expressions.

The Lagrange equations of motion or Hamilton’s principle
(Fliigge 1962) are often the best way to analyze complex dynamic
systems. So why hasn’t this approach been followed?—Because
these equations are generally not valid for systems with variable
mass (except when the mass depends on time). Although various
special extensions to such systems have been formulated (e.g.,
Pesce 2003), they are complicated and depend on the particular
type of system.

Solution by Quadratures for Constant \ and .,
and ko ,4=0

In this case, which may serve as a test case for finite ele-
ment program, Eq. (12) for the crush-down phase takes the form

ff+f*-0f==P or
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(f=0f-P 31)

Here Q0=1/(1-N), P(t)=F./n(1-N\)gH, F.=F[z(1)],
f=f(t)=z(¢t)/H; and the superior dots now denote derivatives
with respect to dimensionless time T=¢vg/H. Let ¢=f2/2. Then

¢=ff and

¢=0\2¢-P (32)

(62 =266 = 2(0\2¢ - P)¢ (33)

f d(¢?) = f 2(0\2¢ - P)de (34)
4 — 1/2

¢= <§Q\’2cp3/2 ~2Pg+ c) (35)

o(T) 4 _ -1/2
T—Ty= J (—Q\ﬂz@” —2Pp+ c) de (36)
‘P(To)

The second equation was obtained by multiplying the first by
2¢, and Eq. (35) was integrated by separation of variables; C
and T, are integration constants defined by the initial conditions.
The last equation describes the collapse history parametrically;
for any chosen o, it yields the time as t=zVH/g or yVH/g where
zory=H \J’ZTP.

Eq. (12) for the crush-up phase with constant w and A takes
the form

ff+0f=P (37)

Multiplying this equation by f/f and noting that ff=(1/2)(f2)
and f/f=(Inf), one may get the solution as follows:

(/%) =2(Pflf - 0f) (38)
f=2PInf-0N)+C (39)
df=[2(PInf-Qf) + C]"*dr (40)

£(7)
T—TO:LTO) [2(PInf-Qf) + C]"dr (41)

Effect of Elastic Waves

The elastic part of the response did not have to be included in
Eqgs. (12) and (17) because it cannot appreciably interfere with the
buckling and crushing process. The reason is that, at the limit of
elasticity of steel, the shortening of story height is only about
h/500, and the elastic wave in steel is about 600 X faster than the
crushing front at z=z,. An elastic stress wave with approximately
step wave front and stress not exceeding the yield limit of steel
emanates from the crushing front when each floor is hit, propa-
gates down the tower, reflects from the ground, etc. But the
damage to the tower is almost nil because the stress in the wave
must remain in the elastic range and the perfectly plastic part of
steel deformation cannot propagate as a wave (Goldsmith 2001;
Zukas et al. 1982; Cristescu 1972; Kolsky 1963).
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Analogous Problem—Crushing of Foam

A rigid foam is homogenized by a nonlocal strain-softening con-
tinuum. Pore collapse represents a localization instability which
cannot propagate by itself. But it can if driven by inertia of an
impacting object or by blast pressure. One-dimensional impact
crushing can be easily solved from Eq. (12) if the top part of the
tower is replaced by a rigid impacting object of a mass equivalent
to m(z), the initial velocity of which is assigned as the initial
condition at t=0. Compared to inertia forces, gravity may nor-
mally be neglected (i.e., g=0).

Implications and Conclusions

1. If the total (internal) energy loss during the crushing of one
story (representing the energy dissipated by the complete
crushing and compaction of one story, minus the loss of
gravity potential during the crushing of that story) exceeds
the kinetic energy impacted to that story, collapse will con-
tinue to the next story. This is the criterion of progressive
collapse trigger [Eq. (5)]. If it is satisfied, there is no way to
deny the inevitability of progressive collapse driven by grav-
ity alone (regardless of by how much the combined strength
of columns of one floor may exceed the weight of the part of
the tower above that floor). What matters is energy, not the
strength, nor stiffness.

2. One-dimensional continuum idealization of progressive col-
lapse is amenable to a simple analytical solution which
brings to light the salient properties of the collapse process.
The key idea is not to use classical homogenization, leading
to a softening stress-strain relation necessitating nonlocal fi-
nite element analysis, but to formulate a continuum energeti-
cally equivalent to the snapthrough of columns.

3. Distinction must be made between crush-down and crush-up
phases, for which the crushing front of a moving block with
accreting mass propagates into the stationary stories below,
or into the moving stories above, respectively. This leads to a
second-order nonlinear differential equation for propagation
of the crushing front, which is different for the crush-down
phase and the subsequent crush-up phase.

4. The mode and duration of collapse of WTC towers are con-
sistent with the present model, but not much could be learned
because, after the first few seconds, the motion became ob-
structed from view by a shroud of dust and smoke.

5. The present idealized model allows simple inverse analysis
which can yield the crushing energy per story and other
properties of the structure from a precisely recorded history
of motion during collapse. From the crushing energy, one can
infer the collapse mode, e.g., single-story or multistory buck-
ling of columns.

6. It is proposed to monitor the precise time history of displace-
ments in building demolitions—for example, by radio telem-
etry from sacrificial accelerometers, or high-speed optical
camera—and to engineer different modes of collapse to be
monitored. This should provide invaluable information on
the energy absorption capability of various structural sys-
tems, needed for assessing the effects of explosions, impacts,
earthquake, and terrorist acts.
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