## How far away is the horizon?

When we stand on the shore, with our feet just at sea level, and look out to sea, we may ask: how far away is the horizon?
We start by making the simplifying assumption that the earth is a sphere with radius $R$. Then the line from our eye to the horizon is tangent to a circle of radius $R$ (representing the earth) as shown:


Here $h$ is our height (or the height of our eye) above sea level, $R$ is the radius of the earth, $l$ is the length of the line connecting our eye directly to the horizon, and $s$ is the arc length, the distance along the surface of the earth to the horizon. The angle $\theta$ is the angle made between our position and the horizon.
Since the triangle in the figure is a right triangle, we may use the Pythagoren theorem to find relationships between the variables.
Specifically,

$$
l=\sqrt{(R+h)^{2}-R^{2}}=\sqrt{2 R h+h^{2}} .
$$

If we make the assumption that $l$ should be approximately the same as $s$ (since $h$ will be very small compared to $R$ ), then we can say

$$
s \approx l=\sqrt{2 R h+h^{2}} \approx \sqrt{2 R h}=k \sqrt{h}
$$

for a constant $k$. Here we have made the additional simplification that $2 R h+h^{2} \approx 2 R h$ since $h^{2}$ will be very small compared to $2 R h$.
Working out this $k$ value, we can use $R=3959$ miles so that, with $h$ in feet, we have

$$
\sqrt{2 R h}=\sqrt{41807040 h}=\frac{\sqrt{41807040}}{5280} \sqrt{h} \text { miles } \approx 1.22459 \sqrt{h} \text { miles }
$$

For example, if our eye is 5 feet about sea level, then the horizon distance is about

$$
1.22459 \sqrt{5}=2.738 \text { miles away }
$$

To check our calculations, we can work out an "exact" formula and compare.
The angle $\theta$ can be found as

$$
\theta=\cos ^{-1} \frac{R}{R+h}
$$

so that

$$
s=R \theta=R \cos ^{-1} \frac{R}{R+h} .
$$

This expression is, perhaps surprisingly, extremely close to our previous, simpler expression. Here's a table of a few values ( $h$ in feet, other distances in miles).

| $h$ | $1.22459 \sqrt{h}$ | $s=R \cos ^{-1} \frac{R}{R+h}$ | percentage difference |
| :---: | :---: | :---: | :--- |
| 5 | 2.7383 | 2.7378 | $-0.000008172203854 \%$ |
| 10 | 3.8725 | 3.8728 | $0.000001794221200 \%$ |
| 20 | 5.4765 | 5.4763 | $0.00002172705563 \%$ |
| 50 | 8.6592 | 8.6590 | $0.00008152553997 \%$ |
| 100 | 12.246 | 12.246 | $0.0001811895939 \%$ |
| 500 | 27.383 | 27.382 | $0.0009784981053 \%$ |
| 1000 | 38.725 | 38.724 | $0.001975123947 \%$ |
| 10000 | 122.459 | 122.434 | $0.01991252800 \%$ |
| 100000 | 387.249 | 386.478 | $0.1990930664 \%$ |

As you can see, the simpler formula yields incredible accuracy to the complex one, at least to a height of 100000 feet! Notice that at 100000 feet, the angle $\theta$ is still only 5.5932 degrees. So, for all practical purposes, we can estimate the distance to the horizon using $1.22459 \sqrt{h}$ (or perhaps even more simply as just $1.2 \sqrt{h}$ ), which gives the distance in miles when $h$ is in feet. The metric version is

$$
s \approx 3.56972 \sqrt{h} \approx 3.6 \sqrt{h}
$$

in kilometers, with $h$ in meters.

