West Drain Pipe (missing from slab fracture failure)

Gravel retained from penetrating concrete
Waterflow seams and Voids deeper Under Drain Pipe

East Drain Pipe outline created by Pipe + Polyethylene Plastic + emplacement gravel

Source (27)
Voids deeper under Drain Pipe (possible source of water induced weathering of rock - leading to large pockets of weakened base rock).

Drain Pipes to drain this layer under the slab

Gravel layer

Foundation Pour

"Bedrock"

Uncontrolled water in "Gravel layer" (no drainage). Erosion & Stagnation Pressure risk.
Rotation indicators of section of main spillway (gaps, broken drain erosion on wall foundation, and spillway backcutting).

Erosion of foundation base of wall from broken drain at 5th fence post behind spillway wall.

"pulling away" gap in wall and spillway slab.

gap narrowing further down spillway indicates a "rotation"
Two piece aligned stripe
Target - designed to visually measure further movement (downslope pull-way/rotation)

Wall pulled away downslope (grey material at scaffolding shows repair of pull-away & extent of movement.)

Coring/drilling to access/repair sub Slab regions(s).

Movement

Repair Gap of main spillway slab coincident with wide "pull-away" movement

Angled line marked on surface of concrete - denoted by series of white arrows.

Source (27)
Spillway Repair - Drilled & emplaced "rock bolts" to secure concrete slabs

Source (27)
No longitudinal reinforcement steel connecting spillway slabs to prevent separation

Source (19)
No longitudinal reinforcement steel connecting spillway slabs

Source (19)
No transverse reinforcement steel connecting spillway slabs to prevent separation
Holes left by ‘extracted’ load transfer ‘dowels’ – see design drawing altered during construction

No transverse reinforcement steel connecting spillway slabs to prevent separation
Pre-Failure Images

1967 – Spillway being constructed – walls being cast – chute subgrade placed
Sidewall drain not flowing water

Large trees growing next to chute wall - roots able to penetrate and plug drains under slabs

Nov 9 2007

Source (22)
October 7, 2009 – Repairs being made to spillway base slabs

Source (22)
Joints leaking water from under spillway slabs
Cracks in spillway chute slabs

Large trees growing adjacent to spillway wall - roots able to penetrate and plug drains
Cracks in spillway discharge slabs
Wall drain not flowing - plugged

Slab edges displaced vertically (circled)

Large trees growing adjacent to spillway wall – roots able to penetrate and plug drains
Repairs underway to chute contraction joint at future site of breach.
Repairs underway on chute contraction joint at future site of breach.

Water seeping through joints from under chute slabs.

Large trees growing adjacent to spillway wall – roots able to penetrate drains.

Source (22)
September 5, 2014

Note slab edges and joints ‘repaired’ during 2013

Source (22)
Patched slab 'herring bone' cracks
Wall drains not flowing - plugged

Large trees growing adjacent to spillway wall – roots able to penetrate drains
Previous inspection report photographs
(all from cited DWR inspection reports)

5/6/08 Inspection Report

11. The spillway at the flood control outlet remains in satisfactory condition.

12/14/09 Inspection Report

20. This view shows the flood control outlet chute as seen from the upper deck. The walls and chute appeared to be stable and in satisfactory condition. Minor repairs along the chute floor will be completed this year.
21. The lower flood control outlet chute is shown. Not the markings for the upcoming chute repairs.  
6/25/10 Inspection Report

12. The concrete along the spillway chute has been repaired. The repaired herringbone crack pattern is said to reflect the underlying drain system.

Oroville Dam, No. 1-48
9. The gates seals were leaking enough to keep the chute floor wet. The repaired lateral cracks in the chute floor are visible as light streaks. The brush at the arrow should be removed to prevent root invasion of the wall drain. No signs of instability were noted along the chute walls or floor. The drain holes at the end of the chute were flowing.

2/16/11 Inspection Report

11. The flood control outlet flow pattern was normal. The walls were well aligned and stable appearing. The drains at the vertical curve along the chute were flowing as expected. The brush growing in the backfill gravel adjacent to the left wall should be removed as previously requested. See arrow at left.
14. The flood control outlet gate seal leakage and drain flow are visible. The trees and brush shown within the ovals should be removed by November 1, 2013.

9/8/14 inspection report

12. The FCO channel appeared to be in satisfactory condition. The walls were well aligned and the patches along the chute floor remain intact.

13. This view is looking upstream along the FCO channel from the dentates. Dark, vertical stains along the walls indicate the location of the drain outfalls.
9. This view looking upstream along the FCO discharge chute shows one tree (arrow) that needs to be removed following a significant effort to remove brush along the outside of the wall.

12. The FCO channel appeared to be in satisfactory condition. The walls were well aligned and the patches along the chute floor remain intact.

13. This view is looking upstream along the FCO channel from the dentates. Dark, vertical stains along the walls indicate the location of the drain outfalls.
9. This view looking upstream along the FCO discharge chute shows one tree (arrow) that needs to be removed following a significant effort to remove brush along the outside of the wall.
2014 Bureau of Reclamation spillway design cross sections (Source 24)

- **Rigid plastic foam insulation**
- **Filter/drainage material**
- **Gravel envelope**
- **9” Anchor bars**
- **© Perforated SP drain**
- **Reinforcement continuous across joint**
- **Water Stop Barrier (WSB) embedded in both faces of joints**
- **Slab connected to foundation with concrete ‘keys’ spanning construction joints.**
CASE 2B: ROCK OR SOIL FOUNDATION WITH FOUNDATION KEY – STEEP SLOPE – APPLICABLE FEATURE IS CONVEYANCE FEATURE (CHUTES)

Water Stop Barrier (WSB) embedded in both faces of joints

Continuous steel reinforcement across construction joints

Slab connected to foundation with concrete ‘keys’ spanning construction joints.

CASE 1B: ROCK OR SOIL FOUNDATION WITHOUT FOUNDATION KEY – FLAT TO GRADUAL SLOPES – APPLICABLE FEATURE IS TERMINAL STRUCTURE (STILLING BASIN)

Water Stop Barrier (WSB) embedded in both faces of joints

Continuous steel reinforcement across construction joints