$11-4403-\mathrm{cv}$

Haten States \mathbb{C} nutrt of Apprals

for the

Sarnid Oitrait

AEGIS INSURANCE SERVICES, INC., LIBERTY INSURANCE UNDERWRITERS, INC., NATIONAL UNION INSURANCE COMPANY OF PITTSBURGH, NUCLEAR ELECTRIC INSURANCE LIMITED, CERTAIN UNDERWRITERS AT LLOYDS, (Syndicates 1225 and 1511), as subrogor of Consolidated Edison Company of New York, Inc., and CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.

Plaintiffs-Appellants,
(For Continuation of Caption See Inside Cover)

ON APPEAL FROM THE UNITED STATES DISTRICT COURT FOR THE SOUTHERN DISTRICT OF NEW YORK

JOINT APPENDIX
 Volume 15 of 16 (Pages JA-3887 to JA-4186)

Katherine Lindsay Pringle
Friedman Kaplan Seiler \& Adelman LLP
Seven Times Square, $28^{\text {th }}$ Floor
New York, New York 10036
(212) 833-1100

Attorneys for Defendants-Cross-
Defendants-Cross-Claimants-
Third-Party-Plaintiffs-Appellees
Thomas J. Moloney
Cleary Gottlieb Steen \& Hamilton LLP
One Liberty Plaza
New York, New York 10006
(212) 225-2000

Attorneys for Defendants-Cross-Defendants-Cross-Claimants-Appellees

FRANKLIN M. SACHS
Greenbaum, Rowe, Smith
\& Davis LLP
Metro Corporate Campus One
P.O. 5600

Woodbridge, New Jersey 07095
(732) 549-5600

- and -

Mark L. Antin
Gennet, Kallmann, Antin
\& Robinson, P.C.
Six Campus Drive
Parsippany, New Jersey 07054
(973) 285-1919

Attorneys for Plaintiffs-Appellants
(For Continuation of Appearances See Inside Cover)
v.

7 WORLD TRADE COMPANY, L.P.,

Defendant-Cross-Defendant-Cross-Claimant-Third-Party Plaintiff-Appellee, CITIGROUP INC., CITIGROUP GLOBAL MARKETS HOLDINGS INC., SALOMON SMITH BARNEY HOLDINGS, INC., SALOMON INC., SILVERSTEIN DEVELOPMENT CORP., SILVERSTEIN PROPERTIES, INC.,

Defendants-Cross-Defendants-Cross-Claimants-Appellees, TISHMAN CONSTRUCTION CORPORATION,

Defendant-Cross-Defendant-Appellee,
OFFICE OF IRWIN G. CANTOR, P.C., FLACK \& KURTZ, INC., Defendants-Cross-Defendants-Third-Party Defendants-Appellees, SWANKE HAYDEN CONNELL ARCHITECTS, SYSKA \& HENNESSY GROUP, INC., AKA SYSKA \& HENNESSY ENGINEERS,

Defendants-Cross-Defendants-Cross-Claimants-Third-Party Plaintiffs, H.O. PENN MACHINERY CO., INC., ALL FIRE SYSTEMS, INC.,

Defendants-Cross-Defendants-Cross-Claimants,
GRACE CONSTRUCTION PRODUCTS, EMERY ROTH \& SON, P.C., SECURITAS AB, SECURITY SERVICES, INC., CENTIFUGAL ASSOCIATES, INC., SYSKA \& HENNESSY, INC.,

Defendants-Cross-Defendants,
AMBASSADOR CONSTRUCTION CO., INC., COSENTINI ASSOCIATES
INC., CANTOR SEINUK GROUP, P.C., SKIDMORE OWINGS AND MERRILL, L.L.P., AMBASSADOR CONSTRUCTION CO., INC., AMEC CONSTRUCTION MANAGEMENT, INC., FKA MORSE DIESEL INTERNATIONAL, INC.,

Defendants-Cross-Defendants-Third-Party Defendants,
DIC/UNDERHILL, a joint venture, KABACK ENTERPRISES, PREFERRED UTILITIES MANUFACTURING CORP., ELECTRIC POWER SYSTEMS, INC., G.C. ENGINEERING \& ASSOCIATES, P.C., FIRECOM INC., FIBERLOCK TECHNOLOGIES, INC., ROSEBWACH TANK CO., INC., ABCO PEERLESS SPRINKLER CORPORATION, AMR CORPORATION, AMERICAN AIRLINES, INCORPORATED, UAL CORPORATION, UNITED AIRLINES INCORPORATED, COLGAN AIR, INCORPORATED, US AIRWAYS GROUP, INCORPORATED, US AIRWAYS, INCORPORATED, HUNTLEIGH USA CORPORATION, ICTS INTERNATIONAL NV, GLOBE

AVIATION SERVICES CORPORATION, BURNS INTERNATIONAL SECURITY SERVICES CORPORATION, PINKERTON'S INCORPORATED, BOEING COMPANY, AMEC, PLC, KABACK ENTERPRISES,

Defendants,
THE WTC PLAINTIFFS,
Plaintiff-Intervenor.

Kenneth G. Schwarz
Cozen O’Connor
45 Broadway Atrium, $16^{\text {th }}$ Floor
New York, New York 10006
(212) 509-9400

Attorneys for Defendant-Cross-
Defendant-Appellee

DAVID AbRAMOVITZ
Zetlin \& De Chiara LLP
801 Second Avenue
New York, New York 10017
(212) 682-6800

- and -

Stephen P. Schreckinger
Gogick, Byrne \& O’Neill, LLP
11 Broadway, Suite 1560
New York, New York 10004
(212) 422-9424

Attorneys for Defendants-Cross-
Defendants-Third-Party-DefendantsAppellees

TABLE OF CONTENTS

Page
Docket Entries JA-1
Complaint, Filed September 10, 2004 JA-179
Answer, Filed December 9, 2004 on Behalf of Cantor Seinuk Group, P.C. and Office of Irwin G. Cantor, P.C JA-222
Answer and Cross-Claims, Filed December 30, 2004 on Behalf of 7 World Trade Center Company, L.P. and Silverstein Properties, Inc. JA-259
Defendant, Flack \& Kurtz, Inc.'s Notice of Motion to Dismiss, Filed January 4, 2005 JA-285
Declaration of Matthew S. Quinn, Esq. in Support of Flack \& Kurtz Inc.'s Motion to Dismiss, Filed January 5, 2005, with the Following Attached Exhibits JA-287
Exhibit A: Federal Emergency Management Agency’s World Trade Center Building Performance Study JA-289
Exhibit B: Port Authority of New York and New Jersey’s Permit to Occupy and Use JA-307
Exhibit C: Plaintiffs’ Notice of Claim, Dated September 8, 2004 JA-308
Exhibit D: Complaint, Filed September 10, 2004 (Omitted Here but Reproduced at p. JA-179) JA-311
Exhibit E: Excerpts of C-10 and C-11 of the Lease Between 7 World Trade Company and Salomon, Inc., Dated November 23, 1988 JA-312
Exhibit F: Report of Frederick W. Mowrer, Ph.D., Dated June 7, 2004 JA-315
Order Granting in Part and Denying in Part Motion of Flack \& Kurtz, Inc., Filed January 10, 2005 JA-319
Amended Complaint, Filed February 7, 2005 JA-322
WTC7 Ground Construction Defendants’ Notice of Motion to Dismiss, Filed April 21, 2005 JA-378
Third Declaration of Beth D. Jacob, Esq. in Support of WTC 7 Ground Defendants’ Motions to Dismiss Plaintiffs' Complaints, Dated April 20, 2005, with the Following Attached Exhibits JA-382
Exhibit A: Amended Complaint Filed in Aegis Insurance Services, Inc., et al. v. Port Authority of New York and New Jersey, et al., 02 Civ. 7188, Dated March 6, 2002 JA-386
Exhibit B: Second Amended Complaint Filed in Certain Underwrites of Lloyds, London, et al. v. The Port Authority of New York and New Jersey, 02 Civ. 7328, Dated April 4, 2003 JA-404
Exhibit C: Complaint, Filed September 10, 2004 (Omitted Here but Reproduced at p. JA-179) JA-420
Exhibit D: Amended Complaint, Filed February 7, 2005 (Omitted Here but Reproduced at p. JA-322) JA-421
Exhibit E: Federal Emergency Management Agency ("FEMA") Report Entitled "World Trade Center Building Performance Study: Data Collection, Preliminary Observations, and Recommendations", Dated May 2002 JA-422
Exhibit F: Metropolitan Transit Authority’s ("MTA") 2002 Annual Report JA-549
Exhibit G: Excerpt from the National Institute of Standards and Technology's Federal Building and Fire Safety Investigation of the World Trade Center Disaster Report Entitled, "The Emergency Response Operations (Draft)" Dated September 2005 JA-551
Exhibit H: Article by Graham Rayman, et al., Entitled A Sequence of Terror Unfolds, NEWSDAY, Dated September 23, 2001 JA-557

Exhibit I: Affidavit of Service of the Summons and Amended Complaint, Interrogatories and Other Documents on Cosentini Associates, Inc. in Aegis Insurance Services, Inc., et al. v. 7 World Trade Center Co., L.P. et al. 04 Civ. 7272, Dated March 7, 2005

Exhibit J: Order Granting in Part and Denying in Part Motion of Flack \& Kurtz, Inc., Filed January 10, 2005 (Omitted Here but Reproduced at p. JA-319)

Exhibit K: Notice Pursuant to C.P.L.R. § 214-d to Skidmore Owings and Merrill, L.L.P., Dated September 2, 2004

Exhibit L: Letter from Mark L. Antin, Esq. to Skidmore Owings and Merrill, L.L.P., Dated September 8, 2004 and the Notice Pursuant to C.P.L.R. § 214-d to Skidmore Owings and Merrill, L.L.P., Dated September 7, 2004

JA-572
Exhibit M: Notice Pursuant to C.P.L.R. § 214-d to Syska \& Hennessy Engineers, Dated September 7, 2004

JA-577
Exhibit N: Letter from Mark L. Antin, Esq. to Flack \& Kurtz, Inc., Dated September 8, 2004 and the Notice Pursuant to C.P.L.R. § 214-d to Flack \& Kurtz, Inc., Dated September 7, 2004

JA-581
Notice of Motion in Support of the Plaintiffs' Motion for
Reconsideration of the Court's Ruling Granting Motions to Dismiss Filed by Certain Design, Construction and Contractor Defendants, Filed January 27, 2006

Memo Endorsed Notice of Motion in Support of the Plaintiffs’ Motion for Reconsideration of the Court's Ruling Granting Motions to Dismiss Filed by Certain Design, Construction and Contractor Defendants, Filed January 31, 2006, Signed by Judge Alvin K. Hellerstein JA-588

Answer and Affirmative Defenses, Filed February 22, 2006, on Behalf of Citigroup Inc. and Citigroup Global Markets Holdings, Inc. ..

Answer to Amended Complaint, Filed March 15, 2006, on Behalf of 7
World Trade Company, L.P. and Silverstein Properties, Inc.
Amended Answer of 7 World Trade Company, L.P. and Silverstein Properties, Inc. with Cross-Claims and Third Party Claims, Filed June 9, 2006 JA-630Plaintiffs' Notice of Motion for an Order, Based Upon NewlyDiscovered Evidence, Vacating the Court’s January 12, 2006Order Granting a Fed. R. Civ. P. 12(b)(6) Motion DismissingPlaintiffs’ Complaint Against Defendants Emery Roth \& Son,P.C., Irwin G. Cantor, P.C., and Cantor Seinuk Group, P.C.,Filed July 24, 2006JA-659
Affidavit of Mr. Richard King in Support of Plaintiffs’ Motion, Based Upon Newly Discovered Evidence, Vacating the Court's January 12, 2006 Order Granting a Fed. R. Civ. P. 12(b)(6) Motion Dismissing Plaintiffs' Complaint Against Defendants Emery Roth \& Son, P.C., Irwin G. Cantor, P.C., and Cantor Seinuk Group, P.C., Filed July 24, 2006 JA-661
Affidavit of Franklin M. Sachs, Esq., in Support of Plaintiffs’ Motion, Based Upon Newly Discovered Evidence, Vacating the Court's January 12, 2006 Order Granting a Fed. R. Civ. P. 12(b)(6) Motion Dismissing Plaintiffs’ Complaint Against Defendants Emery Roth \& Son, P.C., Irwin G. Cantor, P.C., and Cantor Seinuk Group, P.C., Filed July 24, 2006, with the Following Attached Exhibit JA-664
Exhibit A: Consent Agreement, Dated March 31, 1982 JA-670
Order, Filed July 27, 2006 JA-698
Order, Filed August 8, 2006 JA-700
Stipulation Withdrawing Plaintiffs’ Motion to Vacate without
Prejudice, Filed December 12, 2006 JA-702
Second Amended Complaint, Filed July 11, 2008 JA-704
Answer of 7 World Trade Company, L.P., Silverstein Properties, Inc.,and Silverstein Development Corp. to the Second AmendedComplaint, with Cross-Claims and Third-Party Claims, filedAugust 6, 2008JA-764
Answer and Affirmative Defenses to Second Amended Complaint, Filed October 2, 2008, on Behalf of Citigroup Inc. and Citigroup Global Markets Holdings, Inc. JA-772
Notice of Motion by Defendants 7 World Trade Company, L.P., Silverstein Development Corp. and Silverstein Properties, Inc. for Summary Judgment Dismissing all Claims Against Them, Filed November 24, 2009 JA-774
Statement Pursuant to Local Civil Rule 56.1 in Support of Defendants’ Motion for Summary Judgment Dismissing Plaintiffs’ Claims Asserted Against Them, Filed November 24, 2009

\qquad JA-776
Declaration of Jeffrey R. Wang, Esq. in Support of the Motion for Summary Judgment, Filed November 24, 2009, with the Following Attached Exhibits JA-788
Exhibit A: Second Amended Complaint, Filed July 11, 2008 (Omitted Here but Reproduced at p. JA-704) JA-792
Exhibit B: Agreement of Lease Between The Port Authority and Con Edison, Dated May 29, 1968 JA-793
Exhibit C: Excerpts of the Agreement of Lease Between The Port Authority and 7 World Trade Company, L.P., Dated December 31, 1980 JA-828
Exhibit D: Excerpts of the Transcript of the Deposition Testimony of Larry A. Silverstein, Dated June 24, 2009 JA-845
Exhibit E: Plaintiffs' Memorandum of Law in Opposition to Silverstein's Motion to Dismiss, Dated March 18, 2008... JA-853
Exhibit F: Consent Agreement Between Con Edison and 7 World Trade Company, L.P., Dated March 1982 JA-868
Exhibit G: Excerpts of the Transcript of the Deposition Testimony of Richard King, Dated July 17, 2007 JA-897
Exhibit H: Excerpts of the Transcript of the Deposition Testimony of Frank P. Cruthers, Dated May 12, 2009 JA-907
Exhibit I: Excerpts of the Transcript of the Deposition Testimony of Tiernach Cassidy, Dated May 15, 2009JA-914
Exhibit J: Excerpts of the Transcript of the Deposition
Testimony of Richard A. Rotanz, Dated May 14, 2009 JA-918
Exhibit K: Excerpts of the Transcript of the Deposition
Testimony of Rudolf C. Weindler, Dated May 6, 2009..... JA-925
Exhibit L: Excerpts of the Transcript of the Deposition Testimony of Christopher Boyle, Dated June 1, 2009 JA-931
Exhibit M: Excerpts of the Transcript of the Deposition
Testimony of Peter E. Hayden, Dated May 20, 2009 JA-935
Exhibit N: Excerpts of the Transcript of the Deposition Testimony of Terrence Roche, Dated May 19, 2009 JA-940
Exhibit O: Excerpts of the Transcript of the Deposition
Testimony of John S. Spiech, Dated May 27, 2009 JA-944
Exhibit P: Excerpts of the Transcript of the Deposition Testimony of Daniel A. Nigro, Dated June 11, 2009 JA-948
Exhibit Q: Plaintiffs' Post-Hearing Memorandum of Law, Dated April 24, 2009 JA-951
Exhibit R: Letter from Robert Selya, Esq. to William Kufeld,Esq., Dated February 16, 1982, Regarding ConsentAgreementJA-988
Exhibit S: Letter from Robert Selya, Esq. to William Kufeld, Esq., Dated March 8, 1982, Regarding Consent Agreement JA-989

Exhibit T: Memorandum in Support of Con Edison's Right to Pursue Its Claims Against Port Authority for Breach of Lease and Negligence in Connection with the Defective Design and Construction of World Trade Center 7 Atop Con Edison’s Substation, and to Award Prejudgment Interest on Count III at 9\% Per Year, Dated June 15, 2009, in Aegis Insurance Services, Inc., et al. v. Port Authority of New York and New Jersey, et al., 02 Civ. 7188

JA-992
Exhibit U: Excerpts of the Transcript of the Deposition
Testimony of Michael Patti, Dated June 19, 2009
JA-1028
Exhibit V: Excerpts of the Transcript of the Deposition
Testimony of Allan Paull, Dated April 6, 2009
JA-1031
Exhibit W: Declaration of Colin G. Bailey, with Exhibits, Dated June 12, 2009, in Aegis Insurance Services, Inc., et al. v. Port Authority of New York and New Jersey, et al., 02 Civ. 7188

JA-1034
Exhibit X: Typical Floor Framing Plan for 7 World Trade
Company, L.P.. JA-1050
Exhibit Y: Excerpts of the Transcript of the Deposition Testimony of Silvian Marcus, Dated August 12, 2009...... JA-1051

Exhibit Z: Satisfaction of Judgment, Filed September 10, 2009, in Aegis Insurance Services, Inc., et al. v. Port Authority of New York and New Jersey, et al., 02 Civ. 7188

JA-1053
Exhibit AA: Letter from Richard King to John Yurtchuk, Dated
April 17, 1981, Regarding Consent Agreement................ JA-1055
Exhibit BB: Draft of Consent Agreement, Dated April 13, 1981 JA-1058
Exhibit CC: Draft of Consent Agreement, Dated July 10, 1981.. JA-1062
Exhibit DD: Draft of Consent Agreement, Dated January 15, 1982

JA-1068
Exhibit EE: Minutes of Meeting Dated January 18, 1982
JA-1074
Exhibit FF: Affidavit of Richard King in Support of Plaintiffs’ Motion, Based Upon Newly Discovered Evidence, Vacating the Court's January 12, 2006 Order Granting a Fed. R. Civ. P. 12(b)(6) Motion Dismissing Plaintiffs' Complaint Against Defendants Emery Roth \& Son, P.C., Irwin G. Cantor, P.C., and Cantor Seinuk Group, P.C., Dated July 20, 2006 JA-1076
Notice of Motion for Summary Judgment in Favor of Citigroup Inc. and Citigroup Global Markets Holdings, Inc., Filed November 25, 2009 JA-1079
Defendants Citigroup Inc. and Citigroup Global Markets Holding, Inc.'s Statement of Undisputed Facts, Filed November 25, 2009 JA-1081
Declaration of Kristen M. Santillo, Esq. in Support of Citigroup Inc. and Citigroup Global Markets Holdings Inc.'s Motion for Summary Judgment, Filed November 25, 2009, with the Following Attached Exhibits JA-1106
Exhibit 1: Agreement of Lease Between The Port Authority and Con Edison, Dated May 29, 1968 JA-1111
Exhibit 2: Excerpt of Agreement of Lease Between The Port
Authority and 7 World Trade Company, L.P., Dated December 31, 1980 JA-1153
Exhibit 3: Excerpt of Contract Between Salomon Inc. and Skidmore Owings \& Merrill, Dated September 7, 1988.... JA-1162
Exhibit 4: Excerpt of Agreement of Lease Between Salomon Inc., and Silverstein, Dated November 23, 1988 JA-1169
Exhibit 5: Excerpt of Three Party Agreement Among Salomon Inc., Silverstein, and Port Authority, Dated November 23, 1988 JA-1211
Exhibit 6: Excerpt of Contract between Salomon Inc. and Morse/Diesel, Dated January 23, 1989 JA-1295
Exhibit 7: Tenant Alteration Application, Dated May 30, 1989.. JA-1307

Exhibit 8: Excerpt of Contract Between Salomon Inc. and Flack

 \& Kurtz, Dated June 1, 1989JA-1332
Exhibit 9: Permit to Occupy Issued by Port Authority, Dated October 5, 1994 JA-1340

Exhibit 10: Complaint, Filed September 18, 2002 JA-1342
Exhibit 11: Complaint, Filed September 10, 2004 (Omitted Here but Reproduced at p. JA-179).

JA-1350
Exhibit 12: Excerpts of the Transcript of the Deposition Testimony of Cornelius Lynch, Dated September 27, 2007

JA-1351
Exhibit 13: Excerpts of the Transcript of the Deposition Testimony of Robert White, Dated November 7 and 8, 2007

JA-1354
Exhibit 14: Excerpts of the Transcript of the Deposition Testimony of Eugene Fasullo, Dated December 18, 2007 and April 11, 2008

JA-1357
Exhibit 15: Excerpts of the Transcript of the Deposition Testimony of Guy Tozzoli, Dated January 10, 2008

JA-1361
Exhibit 16: Excerpts of the Transcript of the Deposition Testimony of Carl Borsari, Dated February 22, 2008

JA-1366
Exhibit 17: Excerpts of the Transcript of the Deposition Testimony of Gerry Gaeta, Dated February 28, 2008

JA-1372
Exhibit 18: Excerpts of the Transcript of the Deposition Testimony of Varoujan Dovletian, Dated June 11 and 12, 2008

JA-1385
Exhibit 19: Second Amended Complaint in Aegis Ins. Servs.. Inc. v. The Port Authority of N.Y. \&N.J., 02 Civ. 7188, Dated July 10, 2008

JA-1403
Exhibit 20: Excerpts of the Transcript of the Deposition Testimony of Manuel Fernandez, Dated July 18, 2008 JA-1418

Exhibit 21: Excerpts of the Transcript of the Deposition
Testimony of Joseph Ritorto, Dated August 7, 2008
Exhibit 22: Excerpts of the Transcript of the Deposition
Testimony of John Glass, Dated November 11, 2008 JA-1435
Exhibit 23: Excerpts of the Transcript of the Deposition
Testimony of Chi Chu, Dated November 20, 2008 JA-1441
Exhibit 24: Excerpts of the Transcript of the Deposition
Testimony of Irwin G. Cantor, Dated January 27 and 28, 2009

JA-1452
Exhibit 25: Excerpts of the Transcript of the Deposition
Testimony of David Cooper, Dated February 5, 2009
JA-1462
Exhibit 26: Excerpts of the Transcript of the Deposition
Testimony of Jesse Bhatia, Dated March 12, 2009.
JA-1482
Exhibit 27: Excerpts of the Transcript of the Deposition
Testimony of Rudolf C. Weindler, Dated May 6, 2009..... JA-1486
Exhibit 28: Excerpts of the Transcript of the Deposition
Testimony of Frank Cruthers, Dated May 12, 2009 JA-1491
Exhibit 29: Excerpts of the Transcript of the Deposition
Testimony of Richard Rotanz, Dated May 14, 2009 JA-1495
Exhibit 30: Excerpts of the Transcript of the Deposition
Testimony of Tiernach Cassidy, Dated May 15, 2009
JA-1500
Exhibit 31: Excerpts of the Transcript of the Deposition
Testimony of Terrence Roche, Dated May 19, 2009
JA-1503
Exhibit 32: Excerpts of the Transcript of the Deposition
Testimony of Peter Hayden, Dated May 20, 2009
JA-1507
Exhibit 33: Excerpts of the Transcript of the Deposition
Testimony of Allen S. Hay, Dated May 21, 2009.
JA-1510
Exhibit 34: Excerpts of the Transcript of the Deposition
Testimony of John Spiech, Dated May 27, 2009
JA-1513

Exhibit 35: Excerpts of the Transcript of the Deposition
Testimony of Christopher Boyle, Dated June 1, 2009
JA-1518
Exhibit 36: Excerpts of the Transcript of the Deposition
Testimony of Anthony Varriale, Dated June 9, 2009 JA-1522
Exhibit 37: Excerpts of the Transcript of the Deposition
Testimony of Daniel Nigro, Dated June 11, 2009
JA-1525
Exhibit 38: Excerpts of the Transcript of the Deposition
Testimony of Philip Ruvolo, Dated June 12, 2009
JA-1532
Exhibit 39: Declaration of Frederick W. Mowrer, Dated June
12, 2009
JA-1535
Exhibit 40: Declaration of Guy Nordenson, Dated June 15, 2009

JA-1540
Exhibit 41: Memorandum in Support of Con Edison's Right to Pursue Its Claims Against Port Authority for Breach of Lease and Negligence in Connection with the Defective Design and Construction of World Trade Center 7 Atop Con Edison's Substation, and to Award Prejudgment Interest on Count III at 9\% Per Year, Dated June 15, 2009, in Aegis Insurance Services, Inc., et al. v. Port Authority of New York and New Jersey, et al., 02 Civ. 7188 (Omitted Here but Reproduced at p. JA-992) JA-1543

Exhibit 42: Excerpts of the Transcript of the Deposition
Testimony of Anthony Zeolla, Dated June 18, 2009
JA-1544
Exhibit 43: Excerpts of the Transcript of the Deposition
Testimony of Joseph Kelly, Dated June 19, 2009.
JA-1548
Exhibit 44: Excerpts of the Transcript of the Deposition
Testimony of Paul Ferro, Dated June 23, 2009.
JA-1551
Exhibit 45: Excerpts of the Transcript of the Deposition
Testimony of Larry Silverstein, Dated June 24, 2009
JA-1554
Exhibit 46: Excerpts of the Transcript of the Deposition
Testimony of Bruce Gavioli, Dated August 5, 2009
JA-1566
Exhibit 47: Excerpts of the Transcript of the Deposition
Testimony of Silvian Marcus, Dated August 12, 2009 JA-1575
Exhibit 48: Letter from Con Edison to Defendants Regarding Damages, Dated October 1, 2009 JA-1579
Exhibit 49: Excerpts of the Transcript of the Deposition
Testimony of Anthony Zizolfo, Dated October 10, 2009 JA-1596
Exhibit 50: Excerpts of the Transcript of the Deposition
Testimony of Robert Mudzinski, Dated October 14, 2009 JA-1602
Exhibit 51: Excerpts of the Transcript of the Deposition
Testimony of Jeffrey Smilow, Dated October 22, 2009 JA-1605
Exhibit 52: Excerpts of the Transcript of the Deposition Testimony of Richard Peck, Dated November 9, 2009 JA-1614
Exhibit 53: Guidelines for Professional Engineering Practice in New York State, November 19, 2009 (last viewed) JA-1617
Plaintiffs' Notice of Cross-Motion to Stay Determination of Silverstein Defendants’ Summary Judgment Motion as to Count XVII Pending Resolution of Appeal in 02-CV-7188, Dated February 1, 2010 JA-1621
Declaration of Jemi M. Goulian, Esq. in Support of Plaintiffs'
Opposition to Defendants’ Motions for Summary Judgment and in Support of Plaintiffs’ Motion to Stay, Filed February 1, 2010, with the Following Attached Exhibits JA-1623
Exhibit 1: Excerpts of the Transcript of the Deposition
Testimony of Guy F. Tozzoli, Dated January 10, 2008 JA-1634
Exhibit 2: Agreement of Lease Between The Port Authority and
Con Edison, Dated May 29, 1968 (Omitted Here but Reproduced at p. JA-793) JA-1639
Exhibit 3: Excerpts of the Transcript of the Deposition Testimony of Richard L. Groccia, Dated November 29, 2007 JA-1640

Exhibit 4: Excerpts of the Transcript of the Deposition Testimony of Cornelius Lynch, Dated September 26, 2007

JA-1644
Exhibit 5: Deposition Exhibit Lynch-1, which was Marked as an Exhibit at Cornelius Lynch's Deposition, Dated September 26, 2007 JA-1649

Exhibit 6: Deposition Exhibit Lynch-2, which was Marked as an Exhibit at Cornelius Lynch's Deposition, Dated September 26, 2007 JA-1652

Exhibit 7: Excerpts of Deposition Exhibit Bach-1 which was Marked as an Exhibit at Arthur Bach's Deposition, Dated January 15, 2008

JA-1655
Exhibit 8: Excerpts of the Transcript of the Deposition Testimony of Varoujan Dovletian, Dated June 11, 2008...

JA-1680
Exhibit 9: Excerpts of the Transcript of the Deposition Testimony of Larry A. Silverstein, Dated June 24, 2009 ..

JA-1686
Exhibit 10: Deposition Exhibit King-8, which was Marked as an Exhibit at Richard King's Deposition, Dated July 17, 2007

JA-1698
Exhibit 11: Deposition Exhibit Ritorto-1, which was Marked as an Exhibit at Joseph Ritorto's Deposition, Dated August 7, 2008

JA-1714
Exhibit 12: Deposition Exhibit Jupiter-1, which was Marked as an Exhibit at Harold Jupiter's Deposition, Dated April 25, 2008

JA-1719
Exhibit 13: Deposition Exhibit Silverstein-4, which was Marked as an Exhibit at Larry A. Silverstein's Deposition, Dated June 24, 2009

JA-1723
Exhibit 14: Deposition Exhibit Silverstein-6, which was Marked as an Exhibit at Larry A. Silverstein's Deposition, Dated June 24, 2009

Exhibit 15: Document Entitled "Building Description: 7 World Trade Center," Bearing Bates Numbers 7WTC-0007320 .

Exhibit 16: Document Entitled "Significant Terrorist Incidents, 1961-2003: A Brief Chronology, U.S. Department of State, March 2004",

Exhibit 17: Deposition Exhibit Silverstein-1, which was Marked as an Exhibit at Larry A. Silverstein's Deposition, Dated June 24, 2009 (Confidential) (Omitted here but printed at p. CJA-1).

JA-1764
Exhibit 18: News Article Published by The New York Times on January 14, 1980, Entitled "Bomb Damages Offices of Soviet Airlines on Fifth Ave.".

Exhibit 19: News Article Published by The New York Times on October 13, 1980, Entitled "Blast Injures Four Near a U.N. Mission".

Exhibit 20: News Article Published by The New York Times on January 24, 1981, Entitled "Bomb Shatters Windows in Courthouse Downtown"

JA-1769
Exhibit 21: News Article Published by The New York Times on March 1 and 2, 1982, Entitled "At Least 4 Bombs Rock Wall Street; Exchanges are Hit", and "Wall Street Bombing Laid to Resurgence of F.A.L.N.".

Exhibit 22: News Article Published by The New York Times on September 20, 1982, Entitled "Bank on Park Avenue is Bombed".

JA-1774
Exhibit 23: News Article Published by The New York Times on January 2 and 4, 1983, Entitled "F.A.L.N. Puerto Rico Terrorists Suspected in New Year Bombings"', and "Koch Triples Reward Offered in New Year Bombings Case",

Exhibit 24: News Article Published by The New York Times on January 30, 1983, Entitled "Federal Office Building on Staten Island Damaged by a Bomb" \qquad
JA-1779

Exhibit 25: News Article Published by The New York Times on February 24, 1985, Entitled " 2 Women Seen at Site of Blast"

JA-1780
Exhibit 26: News Article Published by The New York Times on July 11, 1986, Entitled "A Realty Gambler’s Big Coup"..

JA-1781
Exhibit 27: News Article Published by The New York Times on November 21, 1986, Entitled "Drexel 'Junk Bond' Wizard" JA-1784

Exhibit 28: Excerpts of Deposition Exhibit Schnabel-7, which was Marked as an Exhibit at Donald Schnabel's Deposition, Dated February 12, 2008 JA-1787

Exhibit 29: Excerpts of Deposition Exhibit Geata-2, which was Marked as an Exhibit at Gerard Gaeta's Deposition, Dated February 28, 2008

JA-1839
Exhibit 30: Deposition Exhibit Schnabel-5, which was Marked as an Exhibit at Donald Schnabel's Deposition, Dated February 12, 2008

JA-1849
Exhibit 31: Deposition Exhibit Borsari-15, which was Marked as an Exhibit at Carl Borsari's Deposition, Dated February 22, 2008

JA-1852
Exhibit 32: Deposition Exhibit Glass-8, which was Marked as an Exhibit at John Glass’ Deposition, Dated November 11, 2008

JA-1855
Exhibit 33: Deposition Exhibit Glass-4, which was Marked as an Exhibit at John Glass’ Deposition, Dated November 11, 2008

JA-1858
Exhibit 34: Deposition Exhibit Glass-1, which was Marked as an Exhibit at John Glass’ Deposition, Dated November 11, 2008 JA-1860

Exhibit 35: Excerpts of the Transcript of the Deposition
Testimony of Chi Chu, Dated November 20, 2008
JA-1861
Exhibit 36: Deposition Exhibit Borsari-10, which was Marked as an Exhibit at Carl Borsari's Deposition, Dated February 22, 2008 JA-1864
Exhibit 37: Deposition Exhibit Chu-2, which was Marked as an Exhibit at Chi Chu's Deposition, Dated November 20, 2008 JA-1865
Exhibit 38: News Article Published by The New York Times on November 13, 1997, Entitled "The Trade Center Verdict: The Overview; ‘Mastermind’ and Driver Found Guilty in 1993 Plot to Blow Up Trade Center" JA-1879
Exhibit 39: Deposition Exhibit Ritorto-9, which was Marked as an Exhibit at Joseph Ritorto's Deposition, Dated August 7, 2008

\qquad JA-1883
Exhibit 40: Deposition Exhibit Weems-4, which was Marked as an Exhibit at Walter Weems’ Deposition, Dated December 13, 2007 JA-1886
Exhibit 41: Excerpts of the Transcript of the Deposition Testimony of Stephen G. Nathan, Dated July 30, 2007 JA-1887
Exhibit 42: Copy of CD Containing Various Videos of the Collapse of 7 World Trade Center Taken from Several Angles JA-1891
Exhibit 43: Excerpts of the Transcript of the Deposition Testimony of Frank P. Cruthers, Dated May 12, 2009 JA-1892
Exhibit 44: Excerpts of the Transcript of the Deposition Testimony of Tiernach Cassidy, Dated May 15, 2009 JA-1896
Exhibit 45: Excerpts of the Transcript of the Deposition Testimony of Richard A. Rotanz, Dated May 14, 2009 JA-1900
Exhibit 46: Excerpts of the Transcript of the Deposition Testimony of Daniel A. Nigro, Dated June 11, 2009 JA-1908
Exhibit 47: Excerpts of the Transcript of the Deposition Testimony of Michael Patti, Dated June 19, 2009 JA-1914

Exhibit 48: Excerpts of the Transcript of the Deposition
Testimony of Michael Catalano, Dated January 30, 2008.
JA-1917
Exhibit 49: Excerpts of the New York City Building Code
Revision, Dated October 4, 2004, as Well as the List of
Amendments.
JA-1921
Exhibit 50: Excerpts of the Transcript of the Deposition
Testimony of David Cooper, Dated February 5, 2009
JA-1954
Exhibit 51: Deposition Exhibit White-7, which was Marked as an Exhibit at Robert C. White's Deposition, Dated
November 8, 2007
JA-1964
Exhibit 52: Excerpts of the Transcript of the Deposition
Testimony of Manuel Fernandez, Dated July 18, 2008
JA-1968
Exhibit 53: Deposition Exhibit White-5, which was Marked as an Exhibit at Robert C. White's Deposition, Dated
November 8, 2007
JA-1971
Exhibit 54: Excerpts of the Transcript of the Deposition
Testimony of Colvin Cox, Dated July 31, 2007.
JA-1975
Exhibit 55: Excerpts of the Transcript of the Deposition
Testimony of Terrence Roche, Dated May 19, 2009
JA-1978
Exhibit 56: Excerpts of the Transcript of the Deposition
Testimony of Daniel Delargy, Dated June 17, 2009.
JA-1981
Exhibit 57: Excerpts of the Transcript of the Deposition
Testimony of Mark A. Giannini, Dated June 29, 2009.
JA-1985
Exhibit 58: Excerpts of the Transcript of the Deposition
Testimony of Peter E. Hayden, Dated May 20, 2009
JA-1988
Exhibit 59: Excerpts of the Transcript of the Deposition
Testimony of Joseph Meola, Dated June 24, 2009
JA-1991
Exhibit 60: Excerpts of the Transcript of the Deposition
Testimony of Anthony Varriale, Dated June 9, 2009
JA-1995

Exhibit 61: Excerpts of the Transcript of the Deposition Testimony of Peter Joseph Mulroy, Dated August 27, 2007 17, 2000

JA-1999

Exhibit 62: Deposition Exhibit Delargy-3, which was Marked
 as an Exhibit at Daniel Delargy’s Deposition, Dated June

JA-2002
Exhibit 63: Deposition Exhibit Cruthers-5, which was Marked as an Exhibit at Frank P. Cruthers' Deposition, Dated May 12, 2009

JA-2003
Exhibit 64: Excerpts of the Transcript of the Deposition Testimony of Irwin G. Cantor, Dated January 27, 2009....

JA-2004
Exhibit 65: Deposition Exhibit Borsari-2, which was Marked as an Exhibit at Carl Borsari's Deposition, Dated February 22, 2008

JA-2011
Exhibit 66: Deposition Exhibit Gilsanz-7, which was Marked as an Exhibit at Ramon Gilsanz's Deposition, Dated May 28, 2009

JA-2013
Exhibit 67: Deposition Exhibit Gilsanz-6, which was Marked as an Exhibit at Ramon Gilsanz's Deposition, Dated May 28, 2009

JA-2020
Exhibit 68: Second Amended Complaint, Filed July 11, 2008 (Omitted Here but Reproduced at p. JA-704)

JA-2026
Exhibit 69: Answer of 7 World Trade Company, L.P., Silverstein Properties, Inc., and Silverstein Development Corp. to the Second Amended Complaint, with CrossClaims and Third-Party Claims, filed August 6, 2008 (Omitted Here but Reproduced at p. JA-764)

JA-2027
Exhibit 70: Answer and Affirmative Defenses to Second Amended Complaint, Filed October 2, 2008, on Behalf of Citigroup Inc. and Citigroup Global Markets Holdings, Inc. (Omitted Here but Reproduced at p. JA-772)

JA-2028
Exhibit 71: Affidavit of Barbara A. Carey, Dated October 27, 2008 JA-2029
Exhibit 72: Excerpts of Transcript of Proceedings, Dated February 23, 2009 in 04-CV-7272 JA-2031
Exhibit 73: Letter from John Yurtchuk to Richard King, Dated March 6, 1981, Bearing Bates Number CANTOR2003105 JA-2035
Exhibit 74: Deposition Exhibit Rubino-7, which was Marked as an Exhibit at Anthony Rubino's Deposition, Dated March 27, 2008 JA-2036
Exhibit 75: Excerpts of the Transcript of the Deposition Testimony of Michael E. Smith, Dated January 15, 2009. JA-2039
Exhibit 76: Deposition Exhibit Cooper-17, which was Marked as an Exhibit at David Cooper’s Deposition, Dated February 5, 2009. JA-2042
Exhibit 77: Excerpts of the Transcript of the Deposition Testimony of Richard P. Fogarty, Dated October 26, 2009 JA-2050
Exhibit 78: U.S. Court of Appeals for the Second Circuit, General Docket Referencing the Current Appellate Scheduling Order JA-2054
Exhibit 79: Deposition Exhibit King-22, which was Marked as an Exhibit at Richard King's Deposition, Dated July 17, 2007 JA-2063
Exhibit 80: Notice of Appeal, Filed August 21, 2009 in 02-CV- 7188 JA-2064
Exhibit 81: Letter from William M. Kufeld to Robert P. Selya, Dated February 9, 1982, Bearing Bates Number SPI025872 JA-2065
Exhibit 82: Transcript of Proceedings, Dated July 7, 2008 JA-2066
Second Declaration of Colin G. Bailey, Filed February 1, 2010, with the Following Attached Exhibits: JA-2084
Exhibit A: Colin Gareth Bailey’s Curriculum Vitae JA-2088
Exhibit B: Photographs Showing Fire Protection on a Different Building JA-2099
Exhibit C: Photograph of SFRM Being Applied JA-2108
Exhibit D: Photograph of Flutes Filled with SFRM JA-2109
Second Declaration of Joseph P. Colaco, Filed February 1, 2010, with the Following Attached Exhibit JA-2110
Exhibit A: Joseph P. Colaco’s Curriculum Vitae JA-2114
Second Declaration of Kenneth Elovitz, Filed February 1, 2010, with the Following Attached Exhibit JA-2123
Exhibit A: Kenneth M. Elovitz’s Curriculum Vitae JA-2129
Second Declaration of Frederick W. Mowrer, Filed February 1, 2010, with the Following Attached Exhibits JA-2134
Exhibit A: Frederick W. Mowrer’s Curriculum Vitae JA-2140
Exhibit B: Photograph of the East Side of 7 World Trade Center JA-2150
Exhibit C: Morse Diesel Photographs Depicting Unfilled Flute Cavities JA-2151
Second Declaration of Guy Nordenson, Filed February 1, 2010, with the Following Attached Exhibit JA-2155
Exhibit A: Guy J.P. Nordenson’s Curriculum Vitae JA-2158
Second Declaration of Joseph M. Sorge, Filed February 1, 2010, with the Following Attached Exhibit JA-2168
Exhibit A: Joseph M. Sorge's Curriculum Vitae JA-2170
Declaration of Jose L. Torero, Filed February 1, 2010, with the Following Attached Exhibit. JA-2175
Exhibit A: Jose L. Torero’s Curriculum Vitae JA-2178
Plaintiffs' Response to Defendants 7 World Trade Company, L.P., Silverstein Development Corp. and Silverstein Properties, Inc. Local Civil Rule 56.1 Statement in Support of Defendants' Motion for Summary Judgment Dismissing Plaintiffs’ Claims, Filed February 1, 2010 JA-2206
Plaintiffs' Response to Defendants Citigroup Inc. and Citigroup Global Markets Holing Inc.’s Local Civil Rule 56.1 Statement of Undisputed Facts, Filed February 1, 2010 JA-2220
Declaration of Sheela V. Pai, Esq. in Support of the Motion for Summary Judgment, Filed March 19, 2010, with the Following Attached Exhibits. JA-2249
Exhibit A: Underground Storage Tank Closure Report, Dated September 9, 2002 JA-2252
Exhibit B: Closure Report for Transformer Oil Release at 7 World Trade Center, Dated January 2004 JA-2258
Exhibit C: Excerpts of the Transcript of the Deposition Testimony of Anthony Varriale, Dated June 9, 2009 JA-2264
Exhibit D: Excerpts of the Transcript of the Deposition Testimony of Phillip C. Ruvolo, Dated June 12, 2009 JA-2267
Exhibit E: Excerpts of the Transcript of the Deposition Testimony of Peter Joseph Mulroy, Dated August 27, 2007 JA-2269
Exhibit F: Excerpts of the Transcript of the Deposition Testimony of Colvin Cox, Dated July 31, 2007 JA-2271
Exhibit G: Excerpts of the Transcript of the Deposition Testimony of John S. Spiech, Dated May 27, 2009 JA-2273
Exhibit H: Excerpts of the Transcript of the Deposition Testimony of Allen S. Hay, Dated May 21, 2009 JA-2276
Exhibit I: Excerpts of the Transcript of the Deposition Testimony of Rudolf C. Weindler, Dated May 6, 2009. JA-2278

Exhibit J: Excerpts of the Transcript of the Deposition
Testimony of Anthony Zeolla, Dated June 18, 2009
JA-2282
Exhibit K: Excerpts of the Transcript of the Deposition
Testimony of Christopher Boyle, Dated June 1, 2009....... JA-2284
Exhibit L: Excerpts of the Transcript of the Deposition
Testimony of Barry "Butch" Brandes, Dated July 14, 2009

JA-2286
Exhibit M: Excerpts of Report Entitled: "Response to WTC7 to Standard Office Fires and Collapse Initiation," Authored by Professor Colin Bailey, Dated February 15, 2010

JA-2288
Exhibit N: Excerpts of Report and Summary of Findings:
"Global Collapse Analysis - World Trade Center 7
Collapse Investigation," Authored by Guy Nordenson, Dated February 12, 2010

JA-2290
Exhibit O: Excerpts of the Transcript of the Deposition
Testimony of Michael Patti, Dated June 19, 2009
JA-2292
Exhibit P: Excerpts of the Transcript of the Deposition
Testimony of Chi Chu, Dated November 20, 2008
JA-2296
Exhibit Q: Excerpts of the Transcript of the Deposition
Testimony of Richard A. Rotanz, Dated May 14, 2009 JA-2298
Exhibit R: The New York Times Article: "Briefcase Found at Bombing Site," Dated January 27, 1975 JA-2302

Exhibit S: Excerpts of the Transcript of the Deposition
Testimony of Joseph Ritorto, Dated August 7, 2008
JA-2303
Exhibit T: Excerpts of Report "Empire State Development
Corporation Attestation Engagement for Utility Restoration and Infrastructure Rebuilding Program Consolidated Edison Company of New York, Inc.
Category Two Filing," Dated February 22, 2007
JA-2306
Declaration of Craig L. Beyler, Filed March 19, 2010, with the
Following Attached Exhibits
JA-2312
Exhibit A: Craig L. Beyler’s Curriculum Vitae JA-2323
Exhibit B: Selected Publication List of Craig L. Beyler, Ph.D.... JA-2326
Exhibit C: Photographs of Debris Strikes Causing Multiple Ignitions in Locations Throughout the Day JA-2330
Exhibit D: Photographs of Filled Flutes JA-2338
Exhibit E: Photographs of Filled Flutes JA-2340
Citigroup Inc. and Citigroup Global Markets Holdings Inc.'s Reply Statement of Undisputed Material Facts, Filed March 19, 2010. JA-2344
Declaration of Chester T. Vogel, Filed March 19, 2010, with the Following Attached Exhibits JA-2404
Exhibit A: Chester T. Vogel’s Curriculum Vitae JA-2412
Exhibit B: Excerpts of Fuel Oil Piping and Storage Manual JA-2413
Exhibit C: Excerpts of New York City Building Code Title 27- Subchapter 3 Occupancy and Construction Classification JA-2423
Exhibit D: Excerpts of Electric Power Generation Transmission Distribution Manual JA-2433
Declaration of Megan M. St. Ledger, Esq. in Further Support of Citigroup Inc. and Citigroup Global Markets Holdings Inc.’s Memorandum of Law in Support of the Motion for Summary Judgment, Filed March 19, 2010, with the Following Attached Exhibits

\qquad JA-2435
Exhibit 1: Excerpts of Agreement of Lease Between Salomon Inc. and Silverstein, Dated November 23, 1988 JA-2438
Exhibit 2: Three Party Agreement Among Salomon Inc., Silverstein, and Port Authority, Dated November 23, 1988 JA-2458
Exhibit 3: GZA GeoEnvironmental Inc., Underground Storage Tank Closure Report, Dated September 9, 2002 JA-2466

Exhibit 4: Excerpts of the Transcript of the Deposition
Testimony of Eugene Fasullo, Dated April 11, 2008(Further Supplementing Santillo Declaration Exhibit 14, Dated December 18, 2007)...

JA-2490
Exhibit 5: Excerpts of the Transcript of the Deposition
Testimony of Varoujan Dovletian, Dated June 12, 2008
(Further Supplementing Santillo Declaration Exhibit 18).
JA-2493
Exhibit 6: Excerpts of the Transcript of the Deposition
Testimony of David Cooper, Dated February 5, 2009
(Further Supplementing Santillo Declaration Exhibit 25).
JA-2497
Exhibit 7: Transcript of Oral Argument and Status Conference in Aegis Ins. Servs., Inc. v. Port Auth. of N.Y. \& N.J., 04-CV-7272, Dated February 23, 2009

JA-2500
Exhibit 8: Excerpts of the Transcript of the Deposition
Testimony of Rudolph C. Weindler, Dated May 6, 2009
(Further Supplementing Santillo Declaration Exhibit 27).
JA-2503
Exhibit 9: Excerpts of the Transcript of the Deposition
Testimony of Richard Rotanz, Dated May 14, 2009
(Further Supplementing Santillo Declaration Exhibit 29).
JA-2505
Exhibit 10: Excerpts of the Transcript of the Deposition
Testimony of Tiernach Cassidy, Dated May 15, 2009
(Further Supplementing Santillo Declaration Exhibit 30). JA-2509
Exhibit 11: Excerpts of the Transcript of the Deposition
Testimony of Terrence Roche, Dated May 19, 2009
(Further Supplementing Santillo Declaration Exhibit 31).
JA-2513
Exhibit 12: Excerpts of the Transcript of the Deposition
Testimony of Peter Hayden, Dated May 20, 2009 (Further Supplementing Santillo Declaration Exhibit 32).

JA-2518
Exhibit 13: Excerpts of the Transcript of the Deposition
Testimony of John Spiech, Dated May 27, 2009 (Further Supplementing Santillo Declaration Exhibit 34)
Exhibit 14: Con Edison September 11, 2001 Restoration Costs

- Summary of 7 World Trade Center Damage Claim Spreadsheet, Dated May 31, 2009. JA-2524
Exhibit 15: Excerpts of the Transcript of the Deposition
Testimony of Anthony Varriale, Dated June 9, 2009 (Further Supplementing Santillo Declaration Exhibit 36). JA-2526
Exhibit 16: Excerpts of the Transcript of the Deposition
Testimony of Daniel Delargy, Dated June 17, 2009 JA-2531
Exhibit 17: Excerpts of the Transcript of the Deposition Testimony of Joseph Meola, Dated June 24, 2009 JA-2535
Exhibit 18: Excerpts of the Transcript of the Deposition
Testimony of Mark Giannini, Dated June 29, 2009 JA-2539
Exhibit 19: Excerpts of the Transcript of the Deposition Testimony of Barry Brandes, Dated July 14, 2009 JA-2543
Exhibit 20: Con Edison September 11, 2001 Restoration Spreadsheet, Dated August 31, 2009 JA-2548
Plaintiffs' Notice of Motion for Leave to File Supplemental and Amended Expert Declarations Incorporating Plaintiffs’ Expert Reports Pursuant to Fed. R. Civ. P. 56(e)(1) in Further Opposition to the Motions for Summary Judgment of Silverstein and Citigroup, Filed April 6, 2010, with the Following Attachments. JA-2549

1. Supplemental and Amended Second Declaration of Colin G.
Bailey, Dated April 5, 2010, with Exhibits JA-2552
2. Supplemental and Amended Second Declaration of Joseph P. Colaco, Dated April 1, 2010, with Exhibits JA-2584
3. Supplemental and Amended Second Declaration of Kenneth Elovitz, Dated April 1, 2010, with Exhibits JA-2600
4. Supplemental and Amended Second Declaration of Frederick W. Mowrer, Dated April 1, 2010, with Exhibits JA-2613
5. Supplemental and Amended Second Declaration of Guy Nordenson, Dated April 1, 2010, with Exhibits JA-2639
6. Supplemental and Amended Second Declaration of Joseph M. Sorge, Dated April 1, 2010, with Exhibit JA-2655
7. Supplemental and Amended Declaration of Jose L. Torero, Dated April 1, 2010, with Exhibit JA-2664
Declaration of Franklin M. Sachs, Esq. in Support of Plaintiffs'
Motion for Leave to File Supplemental and Amended Expert Declarations Incorporating Plaintiffs' Expert Reports Pursuant to Fed. R. Civ. P. 56(e)(1) in Further Opposition to the Motions for Summary Judgment of Silverstein and Citigroup, Filed April 6, 2010, with the Following Attached Exhibits

\qquad JA-2698
Exhibit 1: Letter from Franklin M. Sachs, Esq. to Katherine L. Pringle, Esq. and Christopher P. Moore, Esq., Dated February 16, 2010 JA-2702
Exhibit 2: Reply Brief in Support of Motion by Defendants 7 World Trade Company, L.P., Silverstein Development Corp. and Silverstein Properties Inc. for Summary Judgment Dismissing All Claims, Dated March 19, 2010. JA-2704
Exhibit 3: Declaration of Sheela V. Pai, Esq. in Support of Motion for Summary Judgment, Dated March 19, 2010, with Exhibits JA-2713
Exhibit 4: Declaration of Craig L. Beyler, Dated March 18, 2010, with Exhibits JA-2736
Exhibit 5: Citigroup Inc. and Citigroup Global Markets Holdings, Inc.'s Reply Memorandum of Law in Support of the Motion for Summary Judgment, Dated March 19, 2010 JA-2773
Exhibit 6: Declaration of Megan M. St. Ledger, Esq. in Further Support of Citigroup Inc. and Citigroup Global Markets Holdings Inc.'s Memorandum of Law in Support of the Motion for Summary Judgment, Filed March 19, 2010, with Exhibits JA-2784
Exhibit 7: Declaration of Chester T. Vogel, Dated March 19, 2010, with Exhibits JA-2812
Exhibit 8: Citigroup Inc. and Citigroup Global Markets
Holdings Inc.'s Reply Statement of Undisputed Material Facts, Filed March 19, 2010 (Omitted Here but Reproduced at p. JA-2344) JA-2847
Declaration of Katherine L. Pringle, Esq. in Support of the Accompanying Opposition by Defendants 7 World Trade Company, L.P., Silverstein Development Corp. and Silverstein Properties Inc. to Plaintiffs' Motion for Leave to File Supplemental and Amended Expert Declarations, Filed April 21, 2010, with the Following Attached Exhibits JA-2848
Exhibit A: Letter from Katherine L. Pringle, Esq. to the Honorable Alvin K. Hellerstein, Dated November 12, 2009 JA-2850
Exhibit B: Second Declaration of Kenneth Elovitz, Dated January 22, 2010. JA-2852
Exhibit C: Excerpts of Citigroup Inc. and Citigroup Global Markets Holdings, Inc.'s Reply Memorandum of Law in Support of the Motion for Summary Judgment, Filed March 19, 2010 JA-2864
Supplemental and Amended Declaration of Jose L. Torero, Dated April 1, 2010, with the Following Attached Exhibits JA-2866
Exhibit A: Jose L. Terero’s Curriculum Vitae JA-2869
Exhibit B: Report Entitled "Analysis of the Impact of a Fire in the Mechanical Room ($5^{\text {th }} \& 6^{\text {th }}$ Floor) of the World Trade Center 7 Building," Dated February 12, 2010 JA-2897
Supplemental and Amended Second Declaration of Joseph P. Colaco, Dated April 1, 2010, with the Following Attached Exhibits JA-2979
Exhibit A: Joseph P. Colaco’s Curriculum Vitae JA-2983
Exhibit B: CBM Engineers, Inc., World Trade Center 7: Joseph Colaco Expert Report, Dated February 15, 2010 JA-2993
Supplemental and Amended Second Declarations of Colin G. Bailey, Dated April $5^{\text {th }}$ and $10^{\text {th }}, 2010$, with the Following Attached Exhibits JA-3067
Exhibit 1: Colin G. Bailey's Curriculum Vitae JA-3075
Exhibit A: Photographs Showing Fire Protection on a Different Building JA-3086
Exhibit B: Photograph of SFRM Being Applied JA-3096
Exhibit C: Photograph of Flutes Filled with SFRM JA-3098
Exhibit D: Response of WTC7 to Standard Office Fires and Collapse Initiation, Dated February 15, 2010, By Professor Colin Bailey JA-3100
Supplemental and Amended Second Declaration of Frederick W.
Mowrer, Filed April 22, 2010, with the Following Attached Exhibits JA-3299
Exhibit A: Frederick W. Mowrer’s Curriculum Vitae JA-3305
Exhibit B: Photograph of the East Side of 7 World Trade Center JA-3315
Exhibit C: Morse Diesel Photographs Depicting Unfilled Flute Cavities JA-3316
Exhibit D: Expert Report by Frederick W. Mowrer, Ph.D., Dated February 15, 2010 JA-3320
Supplemental and Amended Second Declaration of Guy Nordenson, Filed April 22, 2010, with the Following Attached Exhibits JA-3887
Exhibit A: Guy JP Nordenson’s Curriculum Vitae JA-3890
Exhibit B: Report and Summary of Findings: Global Collapse Analysis: World Trade Center 7, Collapse Investigation, Dated February 12, 2010 JA-3900
Supplemental and Amended Second Declaration of Kenneth Elovitz, Filed April 22, 2010, with the Following Attached Exhibits JA-4229
Exhibit A: Kenneth M. Elovitz’s Curriculum Vitae JA-4234
Exhibit B: Expert Report of Energy Economics, Inc., Dated February 11, 2010 JA-4239
Supplemental and Amended Second Declaration of Joseph M. Sorge and Curriculum Vitae, Filed April 22, 2010, with the Following Attached Exhibit JA-4258
Exhibit A: JM Sorge, Inc.'s Expert Report, Dated February 2010 JA-4265
Plaintiffs' Memo Endorsed Notice of Motion for Leave to File Supplemental and Amended Expert Declarations Incorporating Plaintiffs’ Expert Reports Pursuant to Fed. R. Civ. P. 56(e)(1) in Further Opposition to the Motions for Summary Judgment of Silverstein and Citigroup, Signed by Judge Alvin K. Hellerstein on April 23, 2010 JA-4297
Memo Endorsed Letter from Franklin M. Sachs, Esq. to the Honorable Alvin K. Hellerstein, U.S.D.J., Dated November 19, 2010 JA-4300
Transcript of Argument, Dated December 16, 2010 JA-4304
Memo Endorsed Letter from Franklin M. Sachs, Esq. to the Honorable Alvin K. Hellerstein, U.S.D.J., Dated March 16, 2011 JA-4390
Stipulation of Voluntary Dismissal of Cross-Claims, Filed November 3, 2011 JA-4393
Stipulation of Voluntary Dismissal of Cross-Claims, Filed November 3, 2011 JA-4395
Memo Endorsed Letter from Katherine L. Pringle, Esq. to the Honorable Alvin K. Hellerstein, Dated November 3, 2011 JA-4397
Defendant Tishman Construction Corporation’s Master Answer to Property Plaintiffs' Master Complaint Against Ground Defendants, Dated December 1, 2005 JA-4399
Transcript of Court Conference, Dated June 21, 2005 JA-4414
Transcript of Conference, Dated August 9, 2006 JA-4463

Memo Endorsed Letter, Dated August 23, 2010, from Beth D. Jacob, Esq. to The Honorable Alvin K. Hellerstein, Requesting Removal of Exhibit 17 to the Declaration of Jemi M. Goulian, Esq., Filed February 1, 2010, from the Public File, Signed by Judge Hellerstein on August 24, 2010 JA-4481

Franklin M. Sachs (FS6036)
GREENBAUM, ROWE, SMITH \& DAVIS LLP
Metro Corporate Campus One
P.O. Box 5600

Woodbridge, New Jersey 07095
Telephone: (732) 549-5600

UNITED STATES DISTRICT COURT
SOUTHERN DISTRICT OF NEW YORK

I, Guy Nordenson, declare:

1. I am a professor of architecture and structural engineering at Princeton University and a practicing structural engineer in New York City. I am a licensed Civil and Structural Engineer in California and a licensed Professional Engineer in New York State as well as other states. Among my specialties are tall building structural design, earthquake engineering and the analysis and design of special structures. My curriculum vitae is attached hereto as Exhibit A.
2. In 2007, I was retained by counsel for plaintiffs in this litigation to serve as consulting structural engineer. I make this affidavit based upon the work that I have done in studying the possible effects of the local failure of a structural member or connection on the total collapse of 7 World Trade Center (WTC7).
3. Since that time, I have reviewed thousands of documents, drawings, and photographs, I have reviewed the computer fire modeling performed on behalf of the Plaintiffs in this
case and I have performed computer structural analyses upon which my opinions regarding the cause of the global collapse of the building are based.
4. The opinions that follow are based on that review and activity, and are made to a reasonable degree of scientific probability. These opinions and the data and materials relied upon in forming these opinions are more fully set forth in my report dated February 12, 2010, attached hereto as Exhibit B and made a part hereof.
5. Based upon my review of available photographic and video evidence, and the deposition testimony of eyewitnesses, including members of the F.D.N.Y., it is my opinion that the collapse of WTC1 or WTC2 did not cause structural damage to any of the core columns of WTC7.
6. The perimeter moment frame columns and the core columns of WTC7 are different in kind. WTC7, prior to its collapse, had 58 perimeter columns that were rigidly connected to spandrel beams to form a moment frame. The interior core columns were not rigidly connected to the perimeter moment frame. Therefore the loss of six or seven perimeter columns in the southwest comer and/or the south side of the building would not have contributed to the collapse of the entire building.
7. Based upon the work performed by Colin G. Bailey, which I have reviewed, the failure to adequately fireproof the flutes of the metal decking of WTC7, and the failure to ensure that a restrained floor system was constructed, would have initiated the collapse sequence of WTC7 from an ordinary office contents fire, along the column line of Columns 79, 80, and 81 , likely at Column 79, between the ninth and thirteenth floors.
8. Because of the very large open floor bays supported by Column 79, a local floor failure near Column 79 between the ninth and thirteen floors would lead to a collapse of the floors adjacent Column 79, at least to the fifth floor, if not all the way to the ground. That collapse would destabilize Column 79 and then Column 80 as a result of their inadequate lateral bracing. This behavior was evident by the sinking of the east penthouse below the roofline along the column line of Columns 79,80 and 81 .
9. Based upon the work performed by Jose L. Torero, which I have reviewed, a fire caused by the ignition of diesel fuel which leaked from the fuel piping of the Salomon Brothers' Standby Generator System on the fifth floor of WTC7, would have compromised Trusses 1 and 2 , and would also have initiated the collapse sequence of WTC7, causing failures along the column line of Columns 79,80 , and 81 , shown by the sinking of the east penthouse below the roofline.
10. Disproportionate collapse of the building interier spread westward due to failure of the transfer trusses and then to the exterior because the cantilevered transfer girders on the north face were supported by one of the transfer trusses. The stacking of critical structural transfer elements created interdependence such that the loss of the transfer truss caused: (1) the cantilevered transfer girders to fail; (2) the perimeter frame to redistribute
load and buckle in the unbraced lower northeast comer of the building, and (3) formation of the "kink" in the north façade visible in the video footage.
11. Whether the failure of Columns 79 and/or 80 was initiated by a diesel fuel fire on the fifth floor or an office contents fire between the ninth and thirteenth floors, the horizontal progression and global collapse ensued as a result of one or more of the following omissions: (1) girder to column connections that are weak in tension and did not brace the columns in accordance with the NYCBC requirement that the bracing be able to support 2% of the design vertical load carried by the column; (2) inadequate redundancy in the configuration of the transfer structures; or (3) lack of structural integrity (resistance to disproportionate collapse) in the design and construction of WTC7, including, without limitation, disregard for floor segmentation caused by the trench headers. ${ }^{1}$
12. Based on the fire and structural fire engineering analyses that have been performed by others and reviewed by me, and based on my analysis of the global collapse of the structure, it is my opinion that, contrary to established engineering practice, a local failure led to global collapse of the building as a result of the way in which the building was designed and constructed.

I declare under penalty of perjury that the foregoing statements made by me are true. I am aware that if any of the foregoing statements made by me are willfully false, I may be subject to punishment.

DATED: April 1,2010

[^0]Guy Nordenson and Associates

	Curriculum vita
Name	Guy JP Nordenson
Profession	Structural Engineer
Position	Partnet
	Summary

Guy Nordenson is a structural engineer and professor of architecture and structural engineering at Princeton University. He studied at MIT and the University of California at Berkeley and began his career as a draftsman in the joint studio of R Buckminster Fuller and Isamu Noguchi in Long Island City in 1976. He has practiced structural engineering in San Francisco and New York, In 1987 he established the New York office of Ove Arup \& Partners and was its director until 1997, when he began his current practice. In 1993-1994 he was a Loeb Fellow at Harvard University, In 1996 he co-founded the Structural Engineers Assoclation of New York. He was the first recipient of the new American Acadeniy of Arts and Letters Academy Award in Archltecture for contributions to architecture by a non-architect in 2003. With Terence Riley he was co-curator of the "Tall Buildings" exhibition held at MoMA ONS in 2004 and his drawings and models for the 2003 WIC Yower 1 design are now in the collection of the MoMA. He is Commissioner and Secretary of the New York City Public Design Commission, the only engineer to serve since the Commission was established in 1898. His project "On the Water - the NY/N.J Upper Bay" won the 2007 AIA College of Fellows Latrobe Research Prize. His Seven Structural Engineers - The Felix Condela Lectures in Structurol Engineering was published in 2008 by MoMA. Recently Nordenson was named the William A Bernoudy Architect in Residence at the American Academy in Rome, was a recipient of the AIA's 2009 Institute Honors for Callaborative Achlevement Award, and also elected to the American Academy of Arts and Sciences.

Nordenson was the structural engineer for the Museum of Modern Art expansion in New York, the Jubilee Church in Rome, the Simmons Residence Hall at MIT in Massachusetts, the Disneyland Parking Structure in California, the Santa Fe Opera House, and over 100 other projects. Recently completed projects include the New. Museum of Contemporary Art in New York, the Nelson-Atkins Museum of Art in Kansas City, the Tofedo Museum of Art Glass Pavilion, and the University of lowa School of Art and Art History. Current projects include the WTC Memorial Museum Slurry Wall bracing structure, 2 pedestrian bridges at Yale University, the Asian Cuitural Complex in South Korea, the expansion of the Kimbell Art Museum in Fort Worth and the San Francisco State University Creative Afts Center. Nordenson is also active in earthquake engineering, including code development, technology transfer, long-range plaming for FEMA and the USGS, and research. He initiated and led the development of the New York City Seismic Code from 1984 to its enactment into law in 1995.

Education
Diploma, Phillips Acaderny, Andover MA 1973
Baccalauréat, Sétie C (mathématiques Alementaires) with distinction 1973
BSc. Massachusetts Institute of Technology (Civil Engineering) 1977
MSc, University of California at Berkeley (Structural Engineering \&t Structural Mechanics) 1978
Loeb Fellow in Environmental Design, Harvard University Graduate School of Design 1993-1994

Affiliations and Qualifications
Fellow, American Society of Civil Engineers
Founder, and past President, Structural Enginecrs Association of New York (1998)
Adjunet Curator, Department of Archltecture and Design, The Museum of Modern Art, New York (2002-date)
Member, Earthquake Engineering Research Institute (1979), Structural Engineers. Association of California (1980),
American Institute of Steel Construction, American Concrefe Institute, and Pre-stressed Concrete Institute
Professional Registrations: CA (1980) (Civil a Structural) NY CT PA OH NJ ME HI (Structural) TX NC NM MITNIAIN

Guy Nordenson and Associates
Guy Nordenson
CV 200905 Page 2 of 10

Professional Experience

1997-date
Guy Nordenson and Associotes LLP. New York NY
Current Projects in Design or Construction
National Museum of African American History and Culture, Washington DC (Freelon Adjaye Bond)
Grace Community Church, New Canaan CT (OBRA Architects / Pompei AD)
San Francisco State University Creative Arts Center, San Francisco CA (Michaei Maltzan Architects)
Anthology Film Archive Expansion, New York NY (Atelier Ralmund Abraham Architect)
Kimbell Art Museum Expansion, Fort Worth TX (Renzo Piano Building Workshop)
WTC 7 Collapse Investigation, New York NY
Lawrence Convention Center Collapse Investigation, Pittsburgh PA
New York City Police Academy, Bronx NY (Perkins + Will with Robert Silman Assoclates)
Jeong Dong Building, Seoul SOUTH KOREA (Kyu Sung Woo Architects)
t'oreal Triangle Site, North Brunswick NJ (Davis Brody Bond)
Ranch House, Eagle View Houses and New York Townhouse Renovation, Red Lion PA and New York NY (Polshek Partnership Architects)
5 Manhattan Pedestrian Bridges, New York NY (Designer and Structural Engineer)
Yale Hillhouse Bridges, New Haven CT (Designer and Structural Engineer)
Asian Cultural Center, Guangju SOUTH KOREA (Kyu Sung Woo Architects)
WTC. Memorial Slurry Wall Bracing Structure, New York NY (Davis Brody Bond with Simpson Gumpertz Et Heger)
Fehnel Visittors Center Art and Nature Park Walkway Bridge, Indianapolis Museum of Art, Indianapolis in
(Marlon Blackwell Architect, Mary Miss Studio)
Jet Propulsion Laboratories Administration ©t Education Complex, Pasadens CA (Michael Maltzan Architects) Linked Hybrid Residential Towers, Beiling CHINA (Steven Holl Architects)
Nanjing Museum of Architecture, Nanjing CHINA (Steven Holl Architects)
Completed Projects - Designer and Structurol Engineer
Gainsborough Studio Bridge, New York NY 2007
Portsmouth Abbey School Church Restoration, Portsmouth RI 2005 Project
World Trade Center Tower One, New York NY (with SOM) 2003 Project
7 Stems Broadcast Tower, Bayonne NJ (in collaboration with Henry N Cobb/Pei Cobb Freed \& Partners) 2002 Conceptual Design
WTC Emergency Building Damage Assessments (SEAoNY, LZA/Thornton-Tomasetti and NYC Dept of Design and Construction). Following $9 / 11$ organized the bullding damage assessment inspections by SEAONY teams in September and October 2001.
Disneyland Escalator Canopies, Anaheim CA - Design and Engineering 1999
Fabrications, MoMA New York NY (installation with TEN Arquitectos) 1998
Completed Projects - Consulting Structural Engineer
Xochimilico Aquarium and Park, Mexico City MEXICO (TEN Arquitectos) 2008 Project
BAM Two Trees, Brooklyn NY (TEN Arquitectos with Robert Silman Associates) 2006-2008 Project
Artreehoose; New Fairfield CT (Della Valle + Bemheimer) 2008
Tropicana Garage Collapse Investigation, Atlantic City NJ (case settled successfully) 2006-2007
New Muscum of Contemporary Art, New York NY (SANAANK Sejima and R Nishizawa) 2007
Nelson-Atkins Museum of Art, Kansas City MO (2000 PA Award - Steven Holl Architects) 2007
Miami Art Museum. Miami FL (Herzog ft de Meuron) 2007 Conceptual Design
Toledo Museum of Art Giass Center, Yoledo OH (SANAANK Sejima and R Nishizawa with Sasaki Structural Consultants) 2006
Fresno Metropolitan Museum, Fresno CA (Michael Maltzan Architects) 2005-2006 Project
Visual and Performing Arts Library, Brooklyn NY (TEN Arquitectos) 2004-2006 Project
Ara Pacis Museum Complex, Rome ITALY (Richard Meier \& Partners Architects) 2006
Jinhua Pavilion, Jinhua CHiNA (Michael Maltzan Architects) 2006
University of lowa School of Art, lowa City IA (Steven Holl Architects) 2006
Guggenheim Museum, Guadalajara MEXICO (TEN Arquitectos) 2005 Project
Queens Museum of Art, Queens NY (Eric Owen Moss Architects with Robert Silman Associates) 2005 Project
Goldman Sachs HO, New York NY (Pei Cobb Freed at Partners, with Yolles Partnership) 2004
59 East 59 Theater, New York NY (UrED/Leo Modrcin Architect) 2004
Bridges Center, Memphis TN (Building Studio with Coleman Coker Architects) 2004

Guy Nordenson and Associates

> Guy Nordenson CV 200905 Page 3 of 10

Completed Projects - Consulting Structural Engineer (cont)
MoMA Expansion, New York NY (Taniguchi and Associates with Severud Assoclates) 2004
Bonfire Memorial, College Station TX (Overland Partners with Haynes Whatey engineers) 2004
Newport Office Centers Design Review, Newark NJ (Lefrak Organization) 2004
Jubilee Church, Rome ITAlY (Richard Meier at Partners Architects) 2003
College of Architecture and Landscape Architecture, U of Minn, Minneapolis MN (Steven Holl Architects) 2003
Lehmann Maupin Gallery, New York NY (OMA/Rem Koolhaas) 2003
Nelson-Atkins Museum of Art Parking Structure, Kansas City MO (2000 PA Award - Steven Holl Architects) 2002
Mif Simmons Hall Residence, Cambridge MA (2000 PA and 2003 AIA Honor Awards - Steven Holl Architects) 2002
Anthology Film Archives Heaven and Earth Library, New York NY (Atelier Raimund Abraham Architect) 2002
Oceanic Retreat, Kauai HI (Steven Holl Architects) 2002 Project
Anchor Point Residence, Homer AK (Bullding Studio/Coleman Coker Architects) 2002 Project
Fetragamo Stores and Cascade/Cantilever Stairs, New York NY, Venice and Bologna ITALY (Michael Gabellini \&
Associates Architect) 2001
Bellevue Art Muscum, WA (Steven Holl Architects) 2001
Mur River Cafe and Installation, Graz AUSTRIA (Acconci Studio) 2001
Corning Glass Center, Corning NY (Smith-Miller + Hawkinson Architects - Consultant) 2000
The Umbrella, Culver Cíty CA (Eric Owen Moss Architect) - Consultant 1999
ReyRosa Residence, TX (Building Studio/Coleman Coker Architect) 1999 Project
Disneyland Parking Structure, Anaheim CA (Wolf + Walker Parking Consultants Architects) 1999
Soho Stair, New York NY (2000 AIA Honor Award - Architecture Research Office) 1999
Knut Hamsun Museum, NORWAY (Steven Holl Architects) 1998 Project
Santa Fe Opera House, Santa Fe NM (Polshek \&t Partners Architects - Consultant) 1998
BDO, Whitney Biennial, New York NY (Gien Seator Artist) 1997
Competitions - Designer and Structural Engineer
River Douglas Bridge Competition, Becconsall UNITED KINGDOM (finalist - 3rd place) 2008
Thu Thlem Bridge and Plaza Competition, Ho Chi Minh City VIEINAM (with Catherine Seavitt Studio and Hargreaves Assoclates) 2008
Patent Office Building Courtyard Roof Washington DC (with Henry N Cobo/Pei Cobb Freed at Partners) 2004
Sugar House Bridge, Salt Lake City UT (finalist with Catherine Seavitt Studio, Landscape) 2003
Portland Aerial Tramway, Portiand OR (finalist with Architecture Research Office) 2003
Stonecutters Bridge, Hong Kong CHINA (finalist with HNTB - Honorable Mention) 2000
Competitions - Consulting Structurol Engineer
FKI Tower, Seoul KOREA, (Pei Cobb Freed \& Partners) 2009
Shenzhen 4 in 1, Shenzhen CHINA, (Steven Holl Architects) 2008
Magok Waterfront and Bridge Competition, Seoul KOREA (Hargreaves Associates) 2008
Perm Museum, Perm RUSSIA (with Acconci Studio) 2008
Guggenheim Museum, Guadalajara MEXICO (TEN Arquitectos - 1st place) 2005
Highline, New York NY (Steven Holl Architects) 2004
City Tower, Chicago II. (Pei Cobb Freed a Partners) 2004
Lombardy Government Center, Milan ITALY (Joint venture with Steven Holl Architects) 2004
Marseilles Museum Competition, Marseilles FRANCE (Steven Holl Architects) 2003
Los Angeles Museum of Natural History, Los Angeles CA (Steven Holl Architects - ist place) 2002
Los Angeles County Museum of Art, Los Angeles CA (Steven Holl Architects) 2002
American Craft Museum, New York NY (Allied Works architects - 1 st place) 2002
Visual and Performing Arts Library, Brooklyn NY (TEN Arquitectos - 1st place) 2002
School of Architecture, Cornell University, Ithaca NY (Steven Holl Architects - ist place) 2001
Eyebeam, New York NY (ARO and P Scott Cohen) 2001
Pinault Foundation, Paris FRANCE (Steven Holl Architects) 2001
Burgos Museum of Human Evolution, Burgos SPAIN (Steven Holl Architects) 2000
Nelson-Atkins Museum of Art, Kansas Clty MO (Steven Holl Architects - 1st place) 1999
Contemporary Art Museum, Rome ITALY (with Steven Holl Architects - 2nd place) 1999
City of Culture, Santiago de Compostela SPAIN (Steven Holl Architects - 2nd Place) 1999
Museum of Modern Art Charrette, New York NY (Steven Holl Architects) 1997
Sapporo Dome Competition, Sapporo JAPAN (Nikken Sekkel and Shimizt - 2nd place) 1997

Guy Nordenson and Associates
Guy Nordenson
CV 200905 Page 4 of 10
1987-1997 Ove Arup \&t Partners, New York NY
Consultant, Ove Arup \&t Partners IntI Ltd 1987-1989
Director and Principal, Ove Arup Et Partners Consutting Engincers PC 1989-1997
Consultant, Ove Arup \& Parthers Consulting Engincers PC 1997
Projects-Designer and Structurol Engineer
Bridge Over Loiza River, San Juan PR 2002-Competition-winning 240 m span single tower cable stbyed bridge, 480 m long 1996-1997 Project
US Air Canopy, La Guardia Airport, NY (1993 Benedictus Award - in collaboration with Smith-Miller + Hawkinson Architects) 1994 - First US architectural application of advanced composite materiais

Completed Projects - Consulting Structural Engineer
Austrian Cultural Institute, New York NY (Raimund Abraham Architect) 2002
Wall Street Esplanade and Ferry Pier, New York NY(Smith-Miller + Hawkinson Architects) 2001
JFK Airport International Arrivals Building, New York NY (SOM Architects - Scheme Oniy) 2001
Sony HO, Berlin GERMANY (Murphy/Jahn Architects - Forum Roof scheme oniy) 2000
Capital Group Companies Offices, San Antonio TX (Pei Cobb Freed \&t Partners Architects) 1998
Kiasma Museum of Contemporary Art, Helsink FINLAND (1999 AIA Honor Award - Steven Holl Architects) 1998
Corning Giass Center, Corning NY (Smith-Miller + Hawkinson Architects) 2000
Santa Fe Opera House, Santa Fe NM (Polshek Et Partners Architects) 1998
Cranbrook Institute of Science, Bloomifield Mi (Steven Holl Architects) 1998
Shorthand House, Houston DX (1997 NY AIA Project Award - Francois deMenil Architect) 1997
Fresco Chapel and Gallery, Houston TX (1994 PA Citation, 1998 NYACE Diamond Award, 1999 AIA Honor Award - Francois deMenil Architect) 1997
Munich Airport Center, Munich GERMANY (Murphyllahn Architects) 1997
Neugebawer House, Naples FL (Richard Meier Et Partners Architects) 1997
Princeton Children's Library; Princeton NJ (Smith-Miller + Hawkinson Architects) 1997
Mashantucket Pequot Museum, Ledyard C7 (Polshek E\& Partners Architects) 1897
Rachofsky House and Art Gallery, Dailas TX (Richard Meier \& Partners Architects) 1997
North Carolina Museum of Art Amphitheater, Rateigh NC (1997 NY AIA Citation - Smith-Miller + Hawkinson Architects) 1997
Sinte Gleska University, Rosebud 50 (1996 PA Citation - Roto Architects) 1996
Inventure Place, Akron OH (1999 AIA Honor Award - Polshek Et Partners Architects) 1996
Farnsworth Museum, Rockland ME (Toshiko Mori Architect) 1996
Swissalr North American Headquarters, Melville NY (Richard Meier \&t Partners Architects) 1995
Televisa Cafeterias, San Angel and Chapultepec, Mexico City MEXICO (1994. PA Citation and 1998 Mies van der Rohe Latin America Prize - TEN Arquitectos) 1998
Foster Whecler Manufacturing Plant, Xinhui CHINA 1995
Kuala Lumpur Office Building, Kuala Lumpur MALAYSIA (Tsao \& McKown Architects) 1994
660MW Boiler House, Zouxian CHINA - Structural and selsmic desigri of boiler support structure 1994
American Airlines Terminal Expansion, JFK Airport NY (Murphy/Jahn Architects) 1993 - demolished 2001
Research and development for the seismic design of suspended boiler structures (Foster Wheeler Energy Corp) 1993
Horseshoe Beach, La fomana DOMINICAN REPUBLIC (Cooper Robertson Architects) 1992
Weatherstone Riding Ring, Sharon CT (Cooper Robertson Architects) 1989
Tokyo Intemational Forum, Tokyo JAPAN (Rafael Vinoly Architect - Schematic Design only) 1989

Guy Nordenson and Associates

> Guy Nordenson CV 200905 Page 5 of 10

1982-1987 Weidlinger Associates, New York NY
Project engineer and from 1985, Associate responsible for new construction, research and restoration projects:

Completed Projects - Consulting Structural Engineer
Stone Mountain Pedestrian Bridge, Atianta GA (Jim Fowler)
US Embassies in Nicosia, CYPRUS (KPF Architects) and Damascus SYRIA (Marcel Breuer Associates)
Façade restoration of landmark. Daily News Building and 745 Fffth Avenue, New York NY
Princlpal investigator for NCEER/NSF-funded research "NYC Seismic Design"
Investigation of collapse of HH Humphrey Metrodome, MN

1978-1982 Forell/Elsesser Engineers, San Froncisco CA
Project engineer responsible for the design of a number of laboratory and office buildings including two of the first steel eccentric brace frames built in California. Chairman and member of committees of the Structural Engineers Association of Califomia charged with drafting the Califormia seismic code.

1974-1976 Fuller and Sadao a Noguchi Fountains, Long Istand City NY
Draftsman and modelmaker for 1samu Noguchi and R Buckminster Fuller. Made
models for Fuller portion of the inaugural Cooper Hewite Museum show
"Man Transforms".
Completed Projects
Dodge Fountain, Detroit MI (Noguchi and Sadao)
Samuel Beckett Theater, Oxford UK (Fuller and Sadao and Norman Foster, project)

Teaching Experience
1995-date Princeton Unlversity School of Architecture, Princeton NJ
Lecturer 1995-1996, Assoclate Professor 1997-2000, 2000-2004 (with continuing tenure)
Professor of Structural Engineering and Architecture 2004-date
Faculty Associate, University Center for Human Values, Princeton Environmental Institute and Department of Civil and Environmental Engineering

Courses
ARC 510 Structural Analysis 1995-date
ARC 518 Construction and Interpretation 1999-date
ARC 408 infrastructure 2002-date
IWS Undergraduate Studio 1999-date
ARC 501 introductory Graduate Studio, with Stan Allen, 2007
ARC 505 Art Storage Graduate Studio, with Adam Yarinski and Mahadev Raman, 2006
ARC 504 Stadium Graduate Studio, with Marc Mimram and Catherine Seavitt 2004
CV 366 Steel and Reinforced Concrete Design 1996-1998
ARC 511 Structural Design 1995-2000
Princeton University Art Museum Director Search Committee 2008
University Campus Planning Steering Committee 2005-2007
School of Engineering and Applied Sciences Strategic Planning 2003
President's Advisory Committee on Architecture 1996-2005
Departmental Representative (in charge of undergraduate program) 1999-2004
Civil Engineering and Architecture Program Committee 1996-date

Visiting Lecturer, Fail 1995

JA-3894

Guy Nordenson and Associates
Guy Nordenson
CV 200905 Page 6 of 10

1985-1995 Columbia University Graduate School of Architecture, Planning and Preservation, New York NY, Adjunct Assistant, then Adjunct Associate Professor

Courses
Architectural Consequences of Stiuctural Decisions (with Mario Salvadori) 1985-1987
Structural Design 1987-1995
Mechanlsms and Composite Structures (with Chuck Hoberman) 1992
Graduate Studio (with Laurie Hawkinson and Sulan Kolatan) 1989 (with Enrique Norten) 1990
Patterns and Structure 1993, 1995
1983 - 1985 Parsons School of Design; Environmental Design, New York NY, instructor

Sponsored Research
On the Water: The NY/NJ Upper Bay, AlA College of Fellows Latrobe Prize Research Grant and High Meadows Foundation Grant 2007-2008
Princeton Environmental Atias 2005
New York City Area Consortium for Earthquake Loss Mitigotion (NYCEM), Technical Director of 3 year research FEMA project to develop GIS based model for earthquake loss estimation in the New York Clty area 1998-2002

Awards

Fellowi American Academy of Arts and Sciences, Cambridge MA 2009
AIA Institute Honors for Collaborative Achievement, San Francisco CA 2009
William A Bernoudy Architect in Residence, American Academy in Rome, ITALY December 2008 - February 2009
Premio Mario Panl Award, School of Architecture University of Anahuac, Mexico City MEXICO 2008
AIA College of Fellows Awards 2007 Latrobe Prize for "On the Water, A Model for the Future: A Study of New York and New Jersey Upper Bay" research project (http://www.aia.org/release_031207._Latrobe)
Academy Award in Architecture, American Academy of Arts and Letters, New York NY 2003
First awarding of a new AAAL award for contribution to architecture by a non-architect
10CA Fellow, International Design Conference, Aspen CO 1995
National Science Foundation Travel Grant to Tokyo JAPAN 1988
Northern California AISC steel design award 1982

Lectures
Bridges, Studio 360, New York NY 2007
Visiting Lecturet/Critic: Yale, Pratt institute, U of MN, NIIT, UCLA, Princeton, VA Tech, MIT, lowa State, Columbia, GA Tech, U of FL. Gainesville, Cornell, IIT, Am Bar Assoc, U of VA, Sci Arc, Arch League of NY, Wash U, Temple U, Syracuse U, ASCA (2005 Keynote), Harvard, AIA Fort Lauderdale
Walker Art Center Summer Lecture Series, Minneapolis MN 1991
Athur H Schein Memorial Lecture (with Smith-Miller + Hawkinson, MiT Department of Architecture) 1991
Witness, House of Representatives Subcommittee on Science, Space and Technology "Lessons
Learned from the Northridge EO", Washington DC 1994

Exhibitions
Sliurry Wall, photograph, AIA Center for Architecture, New York NY 2006
On the Water - NY NL, video, with Aaron Forrest, 10thVenice Architecture Blennale, Venice ITALY 2006
Camber, Sci-Arc, Los Angeles CA 2004
Selected Works, Academy of Arts and Letters, New York NY 2003
Sketchbooks, Estes Gallery, Memphis TN 2003
NEXT - 8 Mostra intemotionale de Architettura-la Biennale de Venezio, Venice ITALY 2002
Art on the Beach, with Jody Culkin and Uwe Mengel, Creative Time, New York NY 1988

Guy Nordenson and Associates
Guy Nordenson
CV 200905 Page 7 of 10

Publications
 Books

On the Water I Palisade Bay, with C Seavitt and A Yarinsky, www.lulu.com, New York NY 2009
Seven Structural Engineers - The Felix Candela Lectures in Structurol Engineering, editor, MoMA Publications, New York NY 2008
New York Consortium for Earthquake Hozard Mitigations, Summary Report with M Tantala et al, MCEER Publication, Buffato NY 2003
Tall Buildings, with Terence Riley, MoMA Publications, New York NY 2003
WTC Emergency - Damage Assessment of Buildings Structural Engineers Association of NY Inspection of September and October 2001 Volume A Summary Report, and B-F on DVD, SEAoNY, New York NY 2003

Research Reports
'Earthquake Loss Estimation Study for the New York City Metropolitan Reglon', with MW Tantala, G Deodatis and KH Jacob, Journal of Soll Dynamics and Earthquake Engincering, October 2007
'Earthquake Loss Estimation Study for the New York City Area', Final Report, Princeton University, School of Architecture and Dept of Civil and Environmental Engineering, funded by FEMA, Jan 2003
'Earthquake Loss Estimation Study for the New York City Area', Second Year Technical Report, Princeton University, Dept of Civil and Environmental Engineering, submitted to MCEER and funded by FEMA Jan 2000
'Earthquake Loss Estimation for the New York City Area' with G Deodatis, KH Jacob and MW Tantala Technical Report Prepared for MCEER, Princeton University, Princeton NJ 1999
'Scismic Hazard Evatuation for New York City' Report of the NYACE Ad-hoc Seismology Comm New York Oct 1986
Articles
'Infrathin' in Engineered Transparency-The Technicol, Visual, and Spatial Effects of Glass, editor Michael Bell and Jeannie Kim, Princeton Architectural Press, New York NY 2009
'On The Water: The New York-New Jersey Upper Bay', with S Cassell, M Koch, C Seavitt, I Smith, MW Tantala and A Yarinsky in Places, 02 November 2008
'Duelling Partners' in The Architect's Newspaper, 09 July 2008
'Glass Pavilion, Toledo Museum of Art', with Brett Schneider in Structural Engineering Intemational, February 2008
'Apocryphal' in Domus, December 2007
Freedom From Fear' in The New York Times, 16 February 2007
'Bullding Bridges', with Noah Klersfeld and Jiro Takagi in Civil Engineering, February 2007
'Concrete Theater' in Lifuid Stone: New Architecture in Concrete, editor Jean-Louis Cohen and E Martin Moeller, Princeton Architectural Press, New York NY 2006
"With Great Joy and Expectations', for Noguchi- Fuller exhibit catalog, Noguchi Museum, Long Isiand City NY 2006
'Tall Buildings' Biemnale de Venezia Catalog, Venice TTALY 2002
'City Square: Structural Engineering, Democracy and Architecture' Grey Reom 7, New York NY 2002
The Daily Practice of Collaboration' introduction to Architecture Research Office, Princeton Architectural Press, New York NY 2002
'Earthquake Loss Estimation for the New York City Area' with G Deodatis, KH Jacob and MW Tantala, 7th National Conference on EQ Engineering (7 NCEEE), EO Engineering Research Institute (EERI), Boston MA July 2002
'Collaboration' Perspecta 31; Reading Structures, Yale Architecture lournal, New Haven CT 2000
' 4 Experimental Projects' Dialogue, Taipei TAIWAN 2000
'Selsmic Design Procedures for Regions of Moderate Seismicity' with GR Bell, Eorthquake Spectro, Feb 2000 vol 16 no 1, Oakland CA
'Seismic Design Requirements for Regiens of Moderate Selsmicity' with GR Bell, Proc $12^{\text {th }}$ World Conference in EQ Engineering, Auckland NEW ZEALAND 2000
'Earthquake Loss Estimation for the New York City Area' with G Deodatis, KH Jacob and MW Tantala Proc 12th World Conference in EQ Engineering, Auckland NEW ZEALAND 2000
'The Lineage of Structure and the Ximbell Art Museum' Lotus 98, Milan ITALY 1998
'Notes on Bucky / Pattems and Structure' in ANY 17, New York 1997
'Notes on Light and Structure' in Light in Architecture, Architecture Review, London UK Apr 1997
'Critical Mass' in Dos Grosse-On Bigness, Daidalos 61, Berlin GERMANY Sept 1996
'Built Value and Earthquake Risk' Proc NCEER Conf Economic Consequences of Earthquakes: Preparing for the Unexpected, New York NY Sept 1995
'Time and Section Study' on Santiago Calatrava in Columbla University Newsline, New York NY 1993

Guy Nordenson and Associates
Guy Nordenson
CV 200905 Page 8 of 10
Articles (cont)
The Spirit of Measure' Introduction to Harry Wolf, Editorial Gustavo Gili SA, Barceiona SPAIN 1993
'Seismic Codes' in Monograph 2 on the Mitlgation of Damage to the Buill Environment, National Earthquake Conference, Memphis TN 1993
'An Inventive Nature' on Chuck Hoberman in S/tes, New York NY 1991
'Earthquake Hazard Reduction in Urban Areas of Moderate Seismicity' 3rd US-fapon Workshop on Urban Earthquake Hazend Reduction, Honolulu HI November 1991
'Adapting Seismic Codes for Zones of Moderate Seismicity: the New York City Experience' New Jersey Section, ASCE Oct 1990
'Acceptable Damage in Low and Moderate Seismic Zones' with LD Reaveley, ATC 15-3 4th US-Japan Workshop on the Improvement of Building Structural Design Practices, Kailua-Kona HI Aug 1990
'Seismic Design of Suspended Boiler Structures' with PJ Donelan and M Garkawe Proc 4th US National Canfon Earthquake Engineering، Palm Springs CA May 1990
'Evaluation of Earthquake Resistance of Existing Building Practice in New York City Proc 9th Wonld Confon Earthquake Eng, Tokyo JAPAN 1988
Wind versus Seismic Design' Earthquake Hazards and the Design of Building Faclities in the Eastem United States New York Academy of Sciences, New York NY Feb 1988
'Some Limitations of Current Seismic Codes for Eastern US Earthquake Resistant Design' Proc Symp on Seismic Hazards, Ground Motions, Soll Liquefaction and Engineering Practice in Eastern N America, Sterling Forest NY 20-22 Oct 1987
'Seismicity and Seismic Hazard in the New York City Area' with CT Statton Proc 3rd US Not Conf on Earthquoke Eng, Charieston SC 1986
'Review of Current and Proposed US Seismic Codes for Steel Structures' Proc ECCS-IABSE Symp Stee I in Building, UUXEMBOUG 1985
'Notes on the Seismic Design of Steel Concentrically Braced Frames' Proc 8th Worid Conf on Earthquake Eng. San Francisco CA 1984
'BSSC Trial Design Program-Bulidings NY-5, NY-20A and NY-32' Weidlinger Associates Report to the Nat inst of Bldg Sci/Bildg Selsmic Safety Council No 182-016 'ATC-3-06 Trial Design Program', NY 1984
'Aseismic Reinforcement of Existing Buildings' with NF Forell Jrnl of the Struct Div Proc ASCE Vol 106 No ST9, 1980
Rune, the MII Arts \& Letters Magozine, Cambridge 1977-present, founding editor
Books and Articles about
'Action and Practice' in Perspecto 40: Monster, Yale Architecture Journal, New Haven CT 2008
David W Dunlap, 'For $9 / 11$ Wall, a Utthe Support and a Permanent Place' in The New York Tlmes, 28 April 2008
Joann Gonchar, 'Behind SANAA's Husion of Weightlessness' in Architecturol Record, March 2008
Nina Rappaport, 'Guy Nordenson and Associates' in Support and Resist - Structural Engineers and Design Innovation, Monacelii Press, New York NY 2007
Joann Gonchar, 'Giass: Transparent, Translucent, and Ironic' in Archilectural Record, 15 October 2007
'New Museum of Contemporary Art: Steel Balancing Act' in Metals in Construction, Fall 2007
Nina Rappaport, 'The Engineer's Moment' in Architectural Record, August 2007
Jane F Kolleeny, 'Guy Nordenson Sketches to Think' in Architectural Record, August 2007
John E Czarnecki, 'AIA Awards Latrobe Prize to Flood Research' in Architecturol Record (Online), 3 May 2007
Karen Trimbath, 'Engineering Collaboration Provides Structure for Glass Pavilion' in Civil Engineering, November 2006
Frederic Edeimann, 'Querelles autour du projet de Ground Zero' In Le Monde, 9 February 2005
Martin Filler, 'Filling the Hole' in The New York Review of Books, 24 February 2005, Vol 52 No 3
Suzanne Stephens, 'Museum of Modern Art, New York' in Architectural Record, January 2005
Glenn Collins, 'Public Lives: Behind a Graceful Spire, Science, Art and Passion' in New York Times, 29 December 2003
Herbert Muschamp, 'A Skyscraper Has a Chance To Be Noble'' in New York Times, 20 December 2003
Lymne Duke. "Revised WTC Freedom Tower Design Unveiled" In Washington Post, 19 December 2003
Adam Gopnick, 'Higher and Higher - What tall buildings do' in New Yarker, 15 December 2003, review of 'Tall Bulldings'
David W Dunlap, 'BLOCKS: The New Look at Ground Zero May Be the Oldest' in New York Times, 11 December 2003
David W Dunlap, 'Plans Reveal World's Tallest Tower, But Only 70 Stories Will Be Inhabited' in New York Times, 10 December 2003

Guy Nordenson
CV 200905 Page 9 of 10

Books and Articles about (cont)

Randy Kennedy, Threats and Responses: the Brooklyn Bridge: A Conspicuous Terror Target is Called Hard to Topple' in New York Times, 20 June 2003
Julie lovine, 'Hard Hat Special; Slide Rule Set, Nameless No More' in New York Times, 30 January 2003
Herbert Muschamp, 'A See-Through Library of Shifting Shapes and Colors' in New York Times, 19 lanuary 2003
James Glanz, 'Quietly Professionals Review High Rise Safety After $9 / 11$ ' in New York Times, 23 October 2002
James Glanz, 'Comparing 2 Sets of Twin Towers: Malaysian Buildings offered as a Model' in New York Times, 23 October 2002
David W Dunlap, 'Designing Buildings to Resist Earthquakes' in New York Times, 30 June 2002.
Herbert Muschamp, 'Thinking Big, a Plan for Ground Zero and Beyond' and 'Don't Rebuild, Reimagine' in NYT Magazine, 8 September 2002, www.nytimes.com/ibrary/magazine/home/20020908mag-index.htmi
Sara Hart, "Dynamic Concrete in the 21st Century' in Architectural Record, October 2001
Virginia Fairweather, 'Santa Fe Sensation' in Civil EngIneering, May 1998
Sara Hart, The Engineer's Hand' in Architecture, November 1998

Commlttees, Juries and Directorships

Current
New York City Green Codes Task Force, Climate Adaptation Technical Committee, 2008-date
Architect's Committee for the Far West Side, Regional Plan Association, 2007-date
Harvard University Presidential Ad Hoc Committee 2008-date
Commissioner and Secretary, New York City Public Design Commission 2006-date
Urban Age Advisory Board - a joint initiative of the London School of Economics and the Alfred Herrhausen Foundation for international Dialogue 2005-date
Buliding Committee, 101 Spring Street, Judd Foundation NY 2004 -date
Earthquake Engineering Research Institute (EERD) Spectra, Editorial Board 2002-date
EERI Design Series, Editorial Board 1992-date

Past

US GSA National Register of Peer Professionals 2002-2004
NY Clty Dept of Buildings WTC Building Code Task Force 2002
ASCE Electronic Computation Committee and Subcommittee on Structural Control 1992-date
National Earthquake Hazards Reduction Program (BSSC/FEMA) Technical Committee TS-1 1997-2000
ATC-35/USGS Ground Motion Initiative 1997-2001
GSA Design Awards Jury 2000
Due Ponti Pedonali Jury, Rome ITALY 2000
EERI Technical Advisory Committee, PEMA Strategic Plan 2005, 1997-1999
Architectural League of New York, Director (1989-1997) and Vice President for Engineering (1993-1997)
ASCE Electronic Computation Committee and Subcommittee on Structural Control 1992-1997NY State Earthquake
Advisory Committee 1990-1997
Earthquake Engineering and Risk Wonkshop USOS Earthquake Hazards Program 5-year plan Jan 1997
USGS/FEMA/BSSC 'Project '97' BSSC Seismic Design Procedure Group 1995-1997
NY City Dept of Buildings Code Committee, Chairman 1989-1996
ATC-34 'Critical Review of Current Approaches to Earthquake Resistant Design' Project Engineering Panel 1994
ATC-33 'Guidelines for the Seismic Rehablitation of Bullidings' Ground Motion/Loads and Force Technical Team 1994-1996
ATC-35 'Workshop' on National Ground Motion Mapping' Risk Representation Working Group 1995
USA Presidential Design Awards, panelist and chair, engineering panel 1995
Arnerican Academy in Rome, Year of Architecture Committee 1994-95
AIA Awards Jury, St Louis Chapter 1992
Intemational Journal of the Structural Design of Tall Buildings, Editorial Board 1992
ASCE Task Comm on Evaluation and Correction of Selsmic Deficiencies in Existing Buildings
5th US-Japan Workshop on the Improvement of Building Structural Design Practices Steering 1992
3rd US Japan Workshop on Urban Earthquake Hazard Reduction Steering Committee 1991
The Real Estate Board of NY Design Committee 1990
NY State Councll on the Arts Capital Funding Initiative Panelist 1989-1991

Guy Nordenson and Associates

Guy Nordenson CV 200905 Page 10 of 10

Post (cont)

4th US National Conference on Earthquake Engineering Technical Program Committee 1990
ATC-24 'Development of Standardized Procedures for Seismic Testing of Components of Steel Structures' Project Engineering Panel 1989-1991
ATC-21 'Rapid.Visual Screening of Buildings for Potential Selsmic Hazards: a Handbook' and ATC-22 'Development of a Handbook on Seismic Evaluation of Existing Buildings' Technical Advisory Committees 1988
ATC-15-2 '3rd US-JIapan Workshop on Improvement of Building Structural Design and Construction Practices' US Delegation 1988
NY Association of Consulting Engineers Ad-hoc Seismology Committee Chairman 1984-87
SEAONC Research Committee and SEAOC Technical Activities Committee Chairman 1981-82
SEAOC Selsmology Committee 1980-date

200905

Due to its size, Exhibit B has not been e-filed. If you wish to receive a copy, please email Marilyn Francisquini at mfrancisquini@greenbaumlaw.com. A hardcopy of Exhibit B has been filed with the Court, and has been served upon the following counsel;

Katherine L. Pringle, Esq.
Friedman, Kaplan, Seiler \& Adelman LLP
1633 Broadway, $46^{\text {th }}$ Floor
New York, NY 10019
Christopher P. Moore, Esq.
Cleary, Gottlieb, Steen \& Hamilton LLP
One Liberty Plaza
New York, NY 10006

WORLD TRADE CENTER 7

COLLAPSE INVESTIGATION
New York NY

Prepared for
Gennet, Kallmann, Antin \&t Robinson PC and
Greenbaum, Rowe, Smith Ct Davis LLP

12 February 2010

By

TABLE OF CONTENTS

.0 INTRODUCTION
2.1 Description of StructureDescription of Collapse on 11 September 2001

Description of Collapse on 11 September 200110
Description of Global Collapse Analysis Approach 11

ANALYSIS BASIS 14
Document Review and Use14
Loading Assumptions 15
Consideration of Debris and Fire Damage 17
Material Strength and Structural Capacities 19
Additional Analysis Details 20
ASSESSMENT OF STRUCTURAL VULNERABILITY 24
General Structural Vulnerabilities 24
Lateral Bracing Code Violation 28
Summary of Structural Vulnerabilities 64
PROBABLE GLOBAL COLLAPSE MECHANISM 65
5.1 Summary of Visual Evidence of Collapse 65
Basis of Staged Deconstruction 67
Summary of Probable Global Collapse Mechanism 68
Probable Collapse Sequence Stage 1 Analysis Details 78
Probable Collapse Sequence Stage 2 Analysis Details 82
Probable Collapse Sequence Stage 3 Analysis Details 92
Probable Collapse Sequence Stage 4 Analysis Details 96
Probable Collapse Sequence Stage 5 Analysis Details 103
Probable Collapse Sequence Stage 6 Analysis Details 111
6.0 SUMMARY OF FINDINGS 114
7.0 REFERENCES 116

APPENDICES

A. 0	APPENDIX A - WTC7 Knife Connection Study by Anthony Ingraffea PE PhD
B. 0	APPENDIX B - Floor Collapse Analysis Report
C. 0	APPENDIX C - Interior Column Stability Analysis Report
D. 0	APPENDIX D - Floor Diaphragm Rupture Analysis Report
E. 0	APPENDIX E - Expert CV, Compensation and Prior Expert Work
F. 0	APPENDIX F - List of Sources Relied Upon in Formulation of Opinion

EXECUTIVE SUMMARY

On 11 September 2001, debris from the collapsing World Trade Center Tower 1 impacted the World Trade Center 7 office building (WTC7) causing only exterior structural damage to the south face and southwest corner of the building and igniting fires in the building. The fires traveled through several floors of the building over the course of the day. At approximately $5: 21 \mathrm{pm}$, the East Penthouse of the building fell, indicating failure of the interior structure on the east side of the building. Approximately five seconds later, the entire building collapsed. The results of structural fire studies documented in Dr Colin Bailey's report indicate that the failure of a single floor girder on a lower floor of the building due to the effects of fire initiated the building collapse.

A well-designed building should have sufficient structural integrity to withstand a local failure such as the loss of a single girder with only local consequences. However, as a result of deficiencies in both its overall design and its details, the WTC7 structure lacked redundancy and robustness and therefore did not have sufficient resistance to disproportionate collapse. Its design lacked a fundamental consideration for structural integrity and load path redundancy.

The primary vulnerability of the building was the fact that the steel floor framing connections to 18 of the 24 interior columns (and 46% of all the floor-to-interior column joints) in the building failed to comply with the lateral bracing requirement for columns in Section C26-1001.2 of the Building Code of the City of New York. The prevalence of double-angle "knife" connections welded to interior columns combined with the frequent use of three-sided column bracing resulted in many locations where interior columns were not adequately laterally-supported. It is evident that the design team did not consider the lateral bracing code requirement in the design of the building because no direction was provided in the contract documents to the contractor's fabricator to design the connections for axial loads. Furthermore, simple hand calculations, had they been performed, would have demonstrated that it is impossible to design a welded double-angle connection for the tensile loads required to brace the heavily-loaded columns in the WTC7 building. As a result of the extensive use of these "knife" connections, the building was in a tenuous state prior to the initiating local collapse event because many of the interior columns were already vulnerable to buckling.

In addition to the pervasive lateral bracing code violations, other characteristics increased the susceptibility of the building to disproportionate collapse. These include the presence of multiple interconnected transfer structures, the use of trench headers in the floor slabs and the large tributary floor areas of interior columns. The use of numerous, and in some cases interdependent, transfer structures with no secondary load path or redundancy, created an interdependency of the structure that made it virtually impossible for a local collapse to remain local. The trench header ducts distributed
throughout the building disrupted the continuity and integrity of the concrete floor diaphragms. The long-span floor framing and large column tributary areas amplified the potential for damage from a single local failure. In this respect, the structure was designed with little consideration of the established standards for structural integrity and the prevention of disproportionate collapse.

Although the precise details of the collapse cannot be exactly simulated by a computer analysis, the probable ${ }^{1}$ stages of the collapse can be identified using information gained from computations evaluating the effects of the known vulnerabilities in the structure combined with an analysis of the visual evidence of the collapse. In contrast to other "black box" analysis programs that could be used to study the collapse, the combination of hand calculations and straightforward computer models presented in this report provides a transparent and easily verifiable account of the collapse.

The probable global collapse sequence is summarized in six stages (Figure 1.1):
1 Following the unseating of Girder 44-79 at Column 79 due to fire effects, Stage 1 consists of the progressive collapse of the floor areas in the northeast corner of the building to the ground.

2 In Stage 2, Column 79 buckles as a result of the loss of adjacent floor structure due to its inadequate lateral bracing.

3 In Stage 3, floor loss from the buckling of Column 79 triggers the buckling of Column 80 which is also inadequately laterally braced.

4 In Stage 4, collapsing floor slabs trigger the failure of Transfer Trusses 1 and 2 and the subsequent failure of two deep transfer girders, leading to extensive additional interior floor collapse and the buckling of the northeast corner of the perimeter frame.

5 In Stage 5, the buckling of the perimeter frame spreads to the south and west. At the same time, the falling interior floor slabs cause the remaining intact floor diaphragms to rupture along their trench headers resulting in lateral displacements that cause twelve interior columns to buckle simultaneously.

6 In the final stage of collapse, falling floors fail five transfer girders and the buckling of the perimeter frame continues to the west overloading the remaining perimeter supports and resulting in the total collapse of the building.

[^1]Guy Nordenson and Associates

Figure 1.1 Stages of global collapse

It is apparent from this sequence of events that the lateral bracing code violations at Columns 79 and 80 as well as the presence of multiple, interdependent non-redundant transfer structures were directly responsible for the progression from a local girder failure to a global collapse on 11 September 2001. Had Columns 79 and 80, carrying unusually large tributary load due to long floor bays, been designed with the coderequired 2\% lateral bracing, these columns would have been able to withstand the adjacent northeastern floor failure, and the collapse on 11 September 2001 would have been arrested after the lower floor failures in the northeast corner of the building (Stage 1). Furthermore, had the transfer trusses been designed with additional redundancy, it is probable that the collapse could have been arrested at Stage 3.

Although the global collapse occurred in the specific sequence described above, because the structure's deficiencies were so pervasive, in my opinion, disproportionate collapse, or total collapse, would likely have resulted from the failure of a single girder in numerous other locations in the building. In this respect, the WTC7 structure was akin to a house of cards, and its global collapse on 11 September 2001 was not unique to the events of the day.

This report summarizes the engineering analysis and findings of Guy Nordenson PE SE regarding the probable cause of the global collapse of the World Trade Center 7 office building (WTC7) on 11 September 2001 and the inherent vulnerabilities of the structure that made it susceptible to disproportionate collapse.

2.1 Description of Structure

2.1.1 General

WTC7 was a 47-story steel office building designed by the architect Emery Roth and Sons PC and the structural engineer Irwin G Cantor PC ("Cantor"). The applicable building code at the time of the design was the 1968 New York City Building Code. The building was trapezoidal in plan as shown in Figure 2.1. The north face of the building was approximately 323 feet in length; the south face of the building was approximately 244 feet in length; and the sides of the building were approximately 148 feet wide. The approximate height of the building excluding the roof penthouses was 612 feet. The building, completed in 1987, was constructed by Tishman Construction Corporation over an existing 3-story Con Edison substation built in 1967.
2.1.2 Gravity System

The gravity system consisted of steel columns and floor framing with concrete slab on metal deck. The interior columns were widely spaced in order to maintain an open floor plan and to limit column interference with both the existing substation below and the truck ramp on the east side of the building at grade. The use of widely-spaced interior columns resulted in uncommonly long spans for the floor framing, up to 53 feet. Columns 79 and 81 on the east side of the building supported especially large tributary areas. These two columns alone supported approximately 8% of the floor area of the building.

Steel girders and floor beams ranged from W12's to W36's with the exception of several built-up plate girders. The floor beams (ie secondary framing members which spanned between girders) were designed to act compositely with the concrete floor slab through shear studs. The girders (ie primary members which spanned between columns) were originally designed to be non-composite, although there is evidence that shear studs were added to a number of these members to increase their load carrying capacity during construction (refer to Section 3.5.1 and Appendix D).

Guy Nordenson and Associates

Figure 2.1 WTC7 typical floor framing plan from Cantor structural drawings (TISHMAN014724)

The layout of the floor framing was generally consistent above Floor 7 with floor beams spanning from perimeter columns to interior columns and the inner core framed with north-south oriented floor beams. The use of both north-south and east-west oriented floor beams created corner conditions where floor beams framed into girders from only one side, rather than two sides (Figure 2.2). The trapezoidal shape of the building also resulted in a number of skewed girder-to-column connections. These aspects of the design were material to the local collapse detailed in the report by Dr Colin Bailey.

The steel columns consisted of W14 wide-flange sections which were in some cases built up with additional web, flange and side plates on the interior and exterior columns of the lower 22 floors. The columns either extended to the ground and were supported on new caisson foundations or were supported on the existing columns and caisson foundations of the Con Edison substation.

Northeast corner framing as-designed (floor beams framing in two directions)

Alternate northeast corner floor framing (floor beams framing in one direction)

Figure 2.2 Configuration of typical floor framing at northeast corner

2.1.3 Connection Details

According to the steel shop drawings, the primary connection details between the girders and columns fall into several classifications: double-angle "knife" type connections (bolted to girder and welded to column), double-angle "header" type connections (welded to girder and bolted to column), and seated connections. Figure 2.3 provides an illustration of each type of connection.

Figure 2.3 Primary girder-to-column connection types (shown in elevation and plan-section)

Transfer Structures

In order to resolve the column layout of the upper levels of the building with the layout of the existing columns in the Con Edison substation, the designers used a number of transfer structures on the lower floor levels of the building. These included three transfer trusses between Floors 5 and 7; eight deep, built-up transfer girders between Floors 6 and 7; and several additional transfer girders on Floors 5 and 7 (Figure 2.4).

JA-3911

Figure 2.4 Transfer trusses and girders located between Floors 5 and 7

Lateral System

The lateral system consisted of perimeter moment frames on all four facades of the building above Floor 7 as well as on the lower seven stories of the north and south sides of the building. The wind girders forming the perimeter moment frames were W36's which were bolted to W14 perimeter columns. Two perimeter belt trusses at Floors 5 to 7 and 22 to 24 provided additional lateral stiffness to the system. Braced frames were used in place of moment frames on the lower seven stories of the building on the narrower east and west sides (Figure 2.5). Additionally, the inner core of the building had both concentric and eccentric braced frames over the lowest seven floors. A thickened reinforced concrete slab floor diaphragm and a horizontal truss at Floor 5 transferred lateral loads from the perimeter to the core. Trench header ducts for electrical wiring disrupted the continuity of the concrete floor diaphragms on the majority of the floor levels.

JA-3912

Figure 2.5 Structural elevations of WTC7

Tenant Fit-Out Work

Following the completion of construction in 1987, additional tenant fit-out work by Skidmore Owings and Merrill (SOM) with structural engineering consulting from Irwin G Cantor PC took place in 1989. This work mainly included the reinforcement of floor beams and girders with flange plates to carry extra live load and the addition of numerous large web penetrations in floor beams and girders to allow for the passage of mechanical and electrical duct work. Additionally on several floors, floor slabs were removed to create double-height spaces.

2.2 Description of Collapse on 11 September 2001

On 11 September 2001, debris from the collapsing World Trade Center Tower 1 impacted WTC7, which was in the process of being evacuated, and caused impact damage to the south face and southwest perimeter corner of the building. Fires were ignited by the debris. The fires germane to this report then subsequently traveled through the building on multiple floors between Floors 5 and 13 over the course of several hours (note - fires above Floor 13 did not contribute to the collapse). Videos obtained from that day show that at approximately $5: 21 \mathrm{pm}$ the East Penthouse of the building fell, indicating collapse of the interior structure on the east side of the building. Approximately 5 seconds later

JA-3913

the videos show that the interior collapse progressed westward, almost simultaneously with the collapse of the perimeter frame. Videos taken from the north side of the building show that during the collapse, the top of the building remained approximately horizontal. The only notable change in the building's geometry was the creation of a horizontal 'kink' on its north façade (see Section 5.1).

2.3 Description of Global Collapse Analysis Approach

The approach used in the global collapse analysis was to identify the effects of innate vulnerabilities of the structure to disproportionate collapse and to use them in combination with the visual indicators of collapse from video footage to determine the primary sequence of events that led to the global collapse of the building on 11 September 2001.

The global collapse studies employed a static structural analysis computer model of the entire building which was deconstructed in stages from the initiating event to the final stages of global collapse. The global model was used to track the structure's loads and deformations at each individual stage. This data was then used as input for independent analyses using more detailed sub-models. The results of the analysis of each detailed sub-model or calculation were then used to inform the next stage of deconstruction within the global model (Figure 2.6).

Figure 2.6 Global collapse model and sub-model interface

Both hand calculations and straightforward computer models were used in the studies, all of which were based on the first principles of physics. These analyses provide a transparent and easily verifiable account of the vulnerability of the structure and of the collapse that occurred on 11 September 2001.
2.3.1 Global Model Description

The global structural model was built and analyzed in SAP2000 Advanced Version 12.0.2 (Ref 17), a structural finite element analysis program developed by Computers and Structures Inc of Berkeley CA with a Staged Construction module which allows for specialized nonlinear static analysis.

The global model included only the structure that was built above or adjacent to the existing Con Edison substation from 1985 onwards. Although the Con Edison substation was not modeled, relevant information regarding its foundations and other structural details was reviewed and deemed to have no influence on the collapse study.

Frame elements were used to represent beams, columns and braces, and shell elements were used to represent floor slabs. The bending stiffness properties of the shell elements were modified to achieve one-way load distribution consistent with the ribbed metal decking. The vertical offset between the floor framing and the floor slabs was modeled, and where the framing was composite with the floor slab, the stiffness due to the offset was accounted for. The level of meshing for both the frame elements and shell elements was limited to the extent that it would ensure accurate results but not unnecessarily increase analysis run-time (Figure 2.7).

Figure 2.7 Floor slab element meshing in partial view of global model

The global collapse model of the full building was analyzed elastically. Because the global model was elastic, nonlinearities and their effects were taken into account in the more detailed sub-models, which informed the progression of collapse in the global model. Additional key assumptions of the global model, including an explanation of the document review process that formed the basis for the construction of the global model, are described in Section 3.0.

Sub-Model Description

A number of detailed sub-models were built and analyzed in SAP2000 Advanced Version 12.0.2 including models to study the stability of individual core columns and to analyze the vulnerability of the diaphragm at trench headers. The load input for the sub-models was taken from the global model. The sub-models were smaller than the global model and therefore better equipped to handle a greater level of detail including finer meshing and the use of "Link" elements with nonlinear force-displacement relationships. Sections 4.0 and 5.0 provide more detail on these studies.

2.3.3 Conservative Assumptions

Where factual evidence was not available, assumptions that were beneficial to the capacity and performance of the structure were used as the basis for both the global analysis model and the detailed sub-models. These assumptions are explained in greater detail in Section 3.0 but are summarized as follows:

- Loading was a lower-bound estimate that included the tenant fit-out changes to the structure that would have decreased loads (ie floor slab removal). Other changes to the structure which tended to increase loads (ie the plating of girders) were considered and concluded to have no effect on the identified collapse mechanism except to make it more severe and even more expected
- Capacities of structural members were increased from design strengths to either expected strengths or average actual strengths from material test reports
- Except at the northeast corner of the building where remaining slab area is explained by the floor failure mechanism, no hanging slabs were assumed to load the perimeter frame following floor failure

3.0
 ANALYSIS BASIS

This section outlines the key assumptions that formed the basis of the global collapse analyses documented in this report. Additional assumptions that are specific to individual analyses are described in the corresponding sections of the report.

3.1 Document Review and Use

Guy Nordenson and Associates (GNA) performed a comprehensive review of the material documents related to the design and construction of WTC7. A detailed list of these documents with corresponding Bates numbers is provided in Appendix F. They include but are not limited to the following:

- World Trade Center 7 Structural Drawings by Irwin G Cantor PC and revisions
- World Trade Center 7 Architectural Drawings by Emery Roth and Sons PC Architects
- World Trade Center 7 Electrical, Mechanical and Plumbing Drawings
- Salomon Brothers Tenant Fit-Out and Alteration Architectural and Structural drawings by Skidmore Owings and Merrill and Irwin G Cantor PC
- Structural Steel Erection, Shop and Fieldwork Drawings by Frankel Steel Limited
- Structural Steel Shop Drawings by Steel Structures Corporation
- Fieldwork drawings by Frankel Steel Limited
- Metal Deck Shop Drawings by Nicholas J Bouras
- Floor Trench Shop Drawings by Mac Fab
- Port Authority of New York and New Jersey Specifications for Structural Steel, Concrete Slabs and Metal Decking
- Testwell Craig Laboratories testing and inspection reports for concrete, welding, spray-on fire protection, and structural steel erection
- Mill Test Reports from US Steel Co, Stelco, Bethlehem Steel, Algoma, and British Steel Co
- Miscellaneous correspondence, sketches, and calculations issued by the Office of Irwin G Cantor, Frankel Steel, Tishman Construction, Silverstein Properties and other parties
- Contractor change orders related to structural steel, shear studs, metal deck, concreting, foundations and fire proofing
- Deposition transcripts of various parties
- Video footage of WTC7 collapse

GNA catalogued almost 4,000 of the reviewed WTC7 design drawings, shop and erection drawings and change orders in a document database using Microsoft Access. The document data were inputted such that the database is searchable by categories including author, recipient, date, trade, steel member type, and floor level. The purpose of the database was to verify that the global model and associated sub-models were
built and analyzed using the most relevant and recent information regarding the WTC7 structure. Additional documents that were received after the creation of the database were reviewed and confirmed with reasonable certainty to not alter the assumptions and conclusions of the global collapse analyses.

3.2 Loading Assumptions

3.2. \quad Floor Dead and Superimposed Dead Loads

The dead and superimposed dead floor loads used in the global collapse analyses were based on the Cantor design documents, calculations and construction correspondence using a conservative, lower-bound approach. Confirmed changes made to the structure during the original construction, such as the plating of certain floor beams, were included in the loading of the model. However, unconfirmed changes made to the structure during the original construction, such as the addition of a 10 psf dead load as indicated in construction correspondence, were not accounted for in the loading of the model. Similarly, changes made to the structure during the subsequent tenant alterations that increased loading to the structure were not included in the model, while changes to the structure that decreased loading, such as floor slab removals, were included. The changes that were not included in the model were determined to have no influence on the identified collapse mechanism except to make it more severe and even more certain.

The dead and superimposed dead loads applied to area elements in the global model are summarized in Table 3.1 based on the loading schedule on Sheet S-24
(TISHMAN014741) of the Cantor structural drawings. The weight of steel framing was not included in the dead loads because this load was automatically determined by the analysis program. No additional load was added to account for the weight of connections. The superimposed dead loads listed in the table include fill, finish, ceiling, ductwork, partitions, flooring, beam encasement and fire proofing. The fire proofing load was estimated to be 1.5 psf .

3.2.2 Floor Design Live Load

The floor design live loads used in the global collapse analyses were largely based upon the loading schedule shown on Sheet S-24 (TISHMAN014741) of the Cantor structural drawings. A set of calculations from the Office of Irwin G Cantor dated July 1984 supplements the loads with additional live loads for specific floor areas of the upper floors and penthouses (CANTOR0003517-0003762). Table 3.2 summarizes the primary live load used for each level based on the Cantor drawings. In identifying the column bracing design code violations, the live loads on the columns were reduced in accordance with Section C26-903.2 of the Building Code of the City of New York (Ref 8).

Table 3.1 Floor Dead and Superimposed Dead Loads

FLOOR LEVEL	CONCRETE FLOOR SLAB DEAD LOAD	SUPERIMPOSED DEAD LOAD
Penthouse	50 psf	9.5 psf
Roof	50 psf	19.5 psf
Floor 24-46	50 psf	18.5 psf
Floor 21-23	50 psf	33.5 psf
Floor 8-20	50 psf	18.5 psf
Floor 7 (North Side)	80 psf	See Note 1
Floor 7 (South Side)	80 psf	See Note 1
Floor 6 (Office)	56 psf	See Note 1
Floor 6 (Switchboard)	62 psf	See Note 1
Floor 5 (Office)	150 psf	See Note 1
Floor 5 (Mechanical)	150 psf	See Note 1
Floor 4	56 psf	See Note 1
Floor 3 (New)	56 psf	See Note 1

Note 1: Superimposed dead load varies based on extent of concrete beam encasement
Table 3.2 General Floor Live Loads (loading of particular areas not specified)

FLOOR LEVEL	FLOOR LIVE LOAD
Penthouse (old/new)	$250 / 30 \mathrm{psf}$
Roof	30 psf
Floor 24 - 46	50 psf
Floor 21-23	75 psf
Floor 8 -20	50 psf
Floor 7 (North Side)	50 psf
Floor 7 (South Side)	50 psf
Floor 6 (Office)	50 psf
Floor 6 (Switchboard)	100 psf
Floor 5 (Office)	50 psf
Floor 5 (Mechanical)	150 psf
Floor 4	100 psf
Floor 3 (New)	100 psf
Floor 3 (Existing)	100 psf
Floor 2 (New)	150 psf
Floor 2 (Existing)	150 psf
Floor 1(Lobby)	100 psf
Floor 1 (Existing)	225 psf

JA-3919

3.3 Consideration of Debris and Fire Damage

3.3.1 Debris Damage

The debris damage to the building that is considered likely to have been present prior to its collapse is shown in Figure 3.1. Damage occurred only on the exterior south and west elevations of the structure. The extent of debris damage was determined from a comprehensive analysis of approximately 250 photographs of the WTC7 building prior to collapse (see Appendix F for sources).

Guy Nordenson and Associates

This damage was not included in the global collapse model; however, it was evaluated and determined to have no influence on the cause or the character of the progression of global collapse.

Figure 3.1 Debris damage to WTC7 from visual evidence documented in appendix of report by Dr Fred Mowrer (Ref 14)

3.4 Material Strength and Structural Capacities

In the global collapse studies documented in this report, the structural capacities of the steel and concrete members of the WTC7 structure were determined using strength design principles specified by the American Institute of Steel Construction (AISC) (Refs 2 and 3) and the American Concrete Institute (ACI) (Ref 1) respectively; however, no strength reduction factors (ϕ factors) were used in the analyses. Rather than using lower-bound design strengths to determine the structural capacities of the members, the global collapse analysis was carried out using either material strengths averaged from actual mill and field test report data or expected material strengths obtained by scaling up the lower-bound design values by the appropriate scale factors from Chapters 5 and 6 of ASCE/SEI 41-06 (Ref 5).

This approach is consistent with the methodology prescribed in ASCE/SEI 41-06 for the assessment of existing structures and results in estimates of capacity that are higher than design codes would permit.
3.4.1 Material Strengths - Steel

Table 3.3 lists the actual material strengths used in the global collapse analyses for the four primary types of structural steel in the building, averaged from approximately 300 available mill test reports (CANTOR 0013115-0013190). Because test reports were unavailable for the concrete slab reinforcement, metal decking, shear studs and high strength bolts, the expected values listed in Table 3.4 were used in the analyses.

Guy Nordenson and Associates

Table 3.3 Actual steel strengths averaged from test reports

STEEL GRADE	YIELD STRENGTH	ULTIMATE STRENGTH
A572 Grade 50	59.9 ksi	83.1 ksi
A572 Grade 42	50.5 ksi	76.5 ksi
A36	46.0 ksi	73.3 ksi
CSA G40.21-44W	49.6 ksi	76.3 ksi

Table 3.4 Expected steel strengths based on scale factors from ASCE/SEI 41-06

TYPE OF STEEL	SCALE FACTOR	YIELD STRENGTH	ULTIMATE STRENGTH
Plain WWF (A82-70 / A185-70)	1.25	-	87.5 ksi
Regular steel rebar (A615)	1.25	75 ksi	112.5 ksi
Metal Decking (A446 / A653)	1.05	-	34.7 ksi
Headed Shear Studs (A108)	1.5	-	97.5 ksi
High Strength Bolts (A325F)	1.1	-	132 ksi
E70XX Electrodes	1.1	-	77 ksi

3.4.2 Material Strengths - Concrete

The strength of the concrete slabs used in the global analyses was calculated as the average of 254 available concrete cylinder test samples for Floors 7 through 13 (see Appendix F for sources). The actual average 28-day compressive strength (f 'c) was determined to be 4002 psi.
3.4.3 Additional Material Properties

Additional steel and concrete material properties that were used in the floor collapse analyses are provided within the report in Appendix B.

3.5 Additional Analysis Details

In addition to the global analysis assumptions listed above, there are several details that deserve particular attention. These details are critical to the performance of the building, its vulnerability to collapse and its behavior during collapse. Therefore, conclusions reached by an analysis that does not take them into account have no factual basis.

Shear Studs on Girders

Although the original structural construction documents issued by Cantor indicate no shear studs on the girders at any level, Guy Nordenson and Associates discovered from the comprehensive document review and cataloguing process that some shear studs were added to many of the girders at all floor levels while the building was under construction. According to the documentation (including CANTOR0008845, CANTOR006189, SHCA0001824, TISHMAN014778-0147780, TISHMAN000315, TISHMAN000300, PANYNJ0095825, CANTOR0016546) the studs were added to increase the vertical load carrying capacity of certain floor areas. Therefore, any additional resistance to disproportionate collapse that was created as a result of this addition was purely coincidental.

3.5.2 Trench Header Ducts

Both the structural and electrical construction documents as well as the Nicholas J Bouras metal deck shop drawings (SOM 0090380-0090388, CONEDEXP 0020051, CANTOR2004996-2005031) and the MacFab trench duct shop drawings (CANTOR2005508-2005521) indicate that trench header ducts existed within the concrete slabs on the majority of the WTC7 floor levels. The trench header ducts were used as part of the electrified cellular floor system within the building. This system utilized the flute cavities under the metal deck to run telephone, power, and signal wiring. In areas where it was necessary to run wiring perpendicular to the direction of the metal deck flutes, trench header ducts were needed. These ducts are typically metal boxes that rest on top of the metal deck within the same depth as the topping slab, disrupting its continuity.

Figure 3.2, the electrical floor plan (PANYNJ0102202), shows the location of the trench header ducts on typical floor levels (Floors 8 to 20). Each red line indicates a 21 " to 36 "-wide location where concrete was omitted and replaced by a thin-walled metal trench header box (Figure 3.3). The segmentation caused by these trench header ducts reduced the integrity of the diaphragm and had a significant effect on the behavior of the building in its response to fire and during the propagation of collapse.

Guy Nordenson and Associates

Figure 3.2 Location of trench header ducts (ie concrete slab discontinuities) on typical floors of WTC7 shown in red (PANYNJ0102202)

Guy Nordenson and Associates

Figure 3.3 Trench header detail from MacFab WTC7 shop drawing T5 (CANTOR2005517)

4.0 ASSESSMENT OF STRUCTURAL VULNERABILITY

Both in its overall design and in its details, the WTC7 structure possessed numerous vulnerabilities and design deficiencies as well as one significant structural code violation that made it particularly vulnerable to disproportionate collapse. The source of these vulnerabilities was a general lack of consideration for structural integrity and load path redundancy on the part of the design team. The primary issues are summarized as follows:

- Non-code compliant lateral bracing of columns
- Lack of four-sided lateral support for interior columns
- Multiple interdependent transfer structures
- Discontinuity of concrete slab diaphragm due to trench headers
- Long spans and large tributary areas of interior columns

The code violations and structural vulnerabilities caused the progression of the local floor slab collapse to a global collapse on 11 September 2001 as explained in Section 5.0.

4.1 General Structural Vulnerabilities

A well-designed structure should have sufficient structural integrity and redundancy to withstand a local failure, such as the failure of a connection or the loss of a girder, beam or column, with limited repercussions. As a result of the following characteristics, the WTC7 structure was less redundant and robust and therefore less resistant to disproportionate collapse than it should have been.
4.1.1 Large Tributary Areas of Interior Columns

WTC7's east and north floor beam spans of 53 ft and 52 ft respectively were unusually long. The main reason for the increased spans was likely the combination of the project requirement for a large floor plate area and the need to resolve the column layout with the existing structure and program below the office tower. The long floor spans resulted in several interior core columns on the east side of the building supporting particularly large tributary areas. The tributary areas of Columns $76,79,80$ and 81 were $1470 \mathrm{ft}^{2}$, $1891 \mathrm{ft}^{2}, 1363 \mathrm{ft}^{2}$ and $1410 \mathrm{ft}^{2}$ respectively (Figure 4.1). Together, these four columns supported approximately 15% of the building's floor plate.

Guy Nordenson and Associates

The integrity of these columns consequently played an especially critical role in the integrity of the building as a whole. The loss of just one long-span girder would result in the failure of a large area of floor slab, which would be difficult to arrest at the floor levels below, especially considering the limited amount of reinforcement used in the concrete floor slabs. Similarly, a column failure, such as the failure of Column 79, would result in the loss of almost 5% of the building's floor plate which provides out-of-plane bracing to the perimeter frame.

Figure 4.1 Approximate tributary zones of eastern interior columns
4.1.2 Multiple Interdependent Transfer Structures

WTC7 contained numerous transfer structures on its lower floors in order to integrate the new building footprint and column layout of the upper levels with the existing footprint and columns of the Con Edison substation below. These included eight 9'-deep cantilevering plate girders transferring eight north perimeter columns to set-back columns at Floor 7; three transfer trusses between Floors 5 and 7; and several additional transfer girders (Figures 4.2 and 4.3). Transfer structures create interdependency between columns such that if one column fails, it implicates the other columns supported by it. None of the transfer systems were designed with secondary load paths or with higher levels of safety that could have provided robustness or redundancy in the system.

JA-3928

Guy Nordenson and Associates

Figure 4.2 Transfer trusses (blue) and Transfer girders (orange) at Floor 7

Figure 4.3 Transfer structures between Floors 5 and 7

JA-3929

Additionally, in several locations the transfer structures were doubled up such that one transfer structure was supported on another, which created further interrelation and interdependency of the structure as a whole. For example, the transfer girder supporting Column 78 was supported on Transfer Truss 2. Also, the deep transfer girders supporting Columns 47 and 48 were supported on Transfer Truss 1 which in turn was supported by another transfer girder at Floor 5 (Figure 4.4). This configuration created a situation where the failure of Column E3 or E4 would result in the direct loss of vertical support for at least Columns 76, 47 and 48, affecting both the interior and exterior structure of the building.

Figure 4.4 Example of interconnected transfer structures in WTC7 (Truss 1)

These types of interdependencies in the structure made it nearly impossible for any type of local collapse to remain local. In this respect, the structure was designed with virtually no consideration of the standards of the time for structural integrity and the prevention of disproportionate collapse, which included provisions in the Building Code of the City of New York (Ref 8) and ANSI's Minimum Design Loads for Buildings and Other Structures (Ref 4).

4.1.3 Discontinuity of Concrete Floor Slab due to Trench Headers

As described in Section 3.5, the majority of the building's concrete floor diaphragms were subdivided by trench header ducts, hollow channels in the floor slab where the concrete was removed to allow for the distribution of electrical wires that comprised the electrified cellular floor system. These trench headers disrupted the continuity of the concrete floor slab such that what was intended to be a unified rigid diaphragm was in reality a number of slab segments tied together by only the metal deck and trench header boxes.

A floor diaphragm plays a critical role in connecting all structural components to a building's lateral system. Typically, the frames or walls of a building's lateral system are oriented and distributed in such a way that when they act together, they provide sufficiently stiff and strong lateral resistance to wind and earthquake loads in all directions. However, if the floor slabs are divided into segments by trench headers and no horizontal bracing is added to retain the in-plane resistance of the diaphragm, the components of the lateral force resisting system cannot act together as they were designed. This subdivision could result in a number of problems including insufficient lateral bracing for columns, increased lateral drifts and torsional movement of structural components.

A disruption in the integrity of the floor slab also means that a local floor slab collapse would be less likely to be arrested by the floor below due to its pre-existing segmentation.

4.2 Lateral Bracing Code Violation

4.2.1 Description of Code Requirement

The design and construction of WTC7 was governed by the Building Code of the City of New York and its referenced standards. Section C26-1001.2 of the Building Code of the City of New York requires that " members used to brace compression members shall be proportioned to resist an axial load of at least 2 percent of the total compressive design stress in the member braced, plus any transverse shear therein" (Ref 8 and Figure 4.5). This code requirement applied to the bracing of all interior and exterior columns in the WTC7 structure. The purpose of this requirement is to ensure that columns and other compression members are capable of developing their expected compression capacity without becoming unstable and buckling. When computing a column's compression capacity, a structural engineer assumes that the column is laterally braced at the floor levels of the building. The code provision provides a straightforward way to compute the lateral forces imposed on the floor framing members and connections as they brace the columns so that the designer may account for the transfer of these forces.

C26-1001.2 Bracing. - Unless otherwise specified in the reference standards, members used to brace compression members shall be proportioned to resist an axial load of at least 2 per cent of the total compressive design stress in the member braced, plus any transverse shear therein.

Figure 4.5 1979 NYC Building Code excerpt regarding lateral bracing (Ref 8)

4.2.2
 Bracing Member Requirement

Section C26-1001.2 of the Building Code of the City of New York uses the term "members" to describe the components of the structure that are able to provide bracing to compression members. The term can refer to both steel and concrete structural components surrounding a compression element if they are expressly designed and detailed for these forces. Because no positive connection between the steel columns and the concrete floor slab was detailed in the WTC7 structure, the concrete floor slab did not participate in the lateral bracing of the columns. Section 4.2.3 provides additional explanation for the exclusion of concrete in the total lateral bracing capacity.

Because the concrete did not participate in the lateral bracing of interior and exterior columns, the bracing capacity requirement had to be satisfied by the girders and beams framing into these columns. The 2% code provision applies to the sum of the capacities of the steel members bracing a column along each axis, with the capacity in the weakest direction governing (Figure 4.6). For example, if a column has one girder framing into each flange, the lateral bracing provided to the column in its major axis is the sum of the tension capacity of one girder connection and the compression capacity of the other girder connection (Figure 4.7a). The bracing capacity of each girder in tension and compression is generally governed by its connection to the column.

Figure 4.6 Diagram of column lateral bracing requirement in NYC Building Code

JA-3932

If a column does not have paired girders bracing it along each axis, the 2% axial force requirement must be satisfied in tension and compression in each connection (Figure 4.7b). The WTC7 building contained numerous interior columns that were braced on only three sides, including Columns 79 and 80 (see Figure 4.11).

Figure 4.7a,b Four-sided and three-sided lateral bracing comparison ($\mathrm{T}=$ tension capacity of girder-to-column connection, $\mathrm{C}=$ compression capacity of girder-to-column connection)

Role of Concrete in Lateral Bracing

While a concrete slab can be designed to provide lateral bracing to interior columns, it is evident that the concrete floor slabs in the WTC7 building were neither designed to function as lateral bracing nor capable of providing lateral force resistance. In order for a concrete slab to contribute to the lateral bracing of an interior column, it must be detailed such that the steel column is able to bear against it in compression. Because concrete has a tendency to shrink when it dries, even if wet concrete were raked directly against a column, without an embedded steel connection the concrete would pull away from the column surface when drying and no longer provide bearing resistance.

The WTC7 construction documents provide no details to indicate a positive connection between the concrete slab and the columns. Furthermore, the specifications do not provide any direction to the contractor that the concrete slab had to be poured contiguous with the steel columns. Without a specific detail or direction to the contractor provided in the contract documents, it could reasonably be expected that the full-depth concrete slab thickness would not have been maintained around the columns, especially in the difficult-to-access areas adjacent to the column webs between their flanges.

While the WTC7 construction documents provide no slab-to-column detail, they indicate on Sheet S24A that the floor-to-column connection was detailed to allow pipe shafts to run vertically through the slabs adjacent to a number of interior columns (Figure 4.8). The plumbing construction documents specify that Columns 79 and 81 , columns with the largest lateral bracing force requirements in the building, had as many as four plumbing lines running through the floor slabs directly adjacent to them. These details confirm that the designers did not intend for the concrete slab to provide lateral bracing to the interior columns.

Figure 4.8 Typical detail on Sheet S24A of Cantor construction documents showing allowance for openings in slabs adjacent to interior columns (TISHMAN014742)

In addition to pipe shafts, the concrete floor slab was also interrupted by trench header ducts at most floor levels. A number of these trench headers were located directly adjacent to interior columns, including Column 81. In these locations, the thin walls of the trench headers and bare metal deck would not have been able to adequately brace the columns.

Finally, the WTC7 building was designed with the intention that it would be customized by its tenants at a later date. Structural modifications included girder web penetrations and floor slab removal to create double-height floor space. Had Cantor intended for the concrete to function as a critical element in the lateral bracing of columns, they would not have permitted the removal of floor slabs adjacent to columns.

JA-3934

According to the project specifications issued by Cantor as the Engineer of Record, the contractor and its fabricator were responsible for the design and detailing of all connections that were not completely designed and detailed by the Engineer of Record in the construction documents. Because the interior girder-to-column and beam-togirder connections were not fully designed in the structural construction documents, their design was the responsibility of the contractor.

Although the contractor and its fabricator were responsible for the design and detailing of these connections, Cantor, as the Engineer of Record, was responsible for providing all criteria required for the design. These criteria included all code-based design loads (ie shear and axial force for the pinned girder-to-column connections) as well as any additional requirements or restrictions deemed necessary by the Engineer of Record. Specifically, it was the Engineer of Record's responsibility to determine the axial force requirements for the design of the girder-to-column connections resulting from Section C26-1001.2 of the Building Code of the City of New York.

The General Notes on Sheet S-20 (TISHMAN014737) of the structural construction documents as well as the Typical Shear Connection Detail Notes on Sheet S-24 (TISHMAN014741) provided the shear force design requirements for the interior girder-to-column connections. These notes referred to load tables in AISC for "standard" shear connections. Nowhere in the construction documents or in the specifications was any direction provided as to the axial force design requirements for these connections. It is evident that the design team, including the contractor's fabricator, considered the interior girder-to-column connections to be standard connections for which the standard AISC tables applied when in fact each of these connections should have been specified as a non-standard connection and designed for specific a shear and axial force.

In addition to specifying design shear forces and other criteria for the interior connection design, Cantor provided the contractor with guidance on connection type in the form of typical details in the construction documents. Figure 9 taken from Sheet S-24 shows their typical beam-to-column detail. The detail appears to show two different connection types: a shear tab (or fin) connection and a bolted double angle connection. Within this one detail, there was conflicting guidance to the contractor's fabricator as to which type of connection to use. Furthermore, because the bolts were not called out in the double-angle connection, it is unclear as to whether this connection was meant to represent a header-type connection or a knife-type connection (see Section 2.1.3 for definition of types).

Figure 4.9 Typical beam-to-column connection detail on Sheet S-24 of the structural construction documents showing both shear tab and double angle connections (TISHMAN014741)

Lateral Bracing Capacity of Steel Girder Connections per AISC

As described in Section 2.1, the girder-to-column connections used in WTC7 fall into three categories: seated connections, double-angle header connections (ie angles bolted to the column), and double-angle knife connections (ie angles welded to the column). While the seated and header connections for the most part had sufficient capacity in tension and compression to provide adequate lateral bracing to the columns, the double-angle knife connections had exceptionally low axial capacity in tension.

The welded double-angle shear connections are weak in tension due to the recommended limitations that AISC places on their geometry. These include limits on the welding of the top and bottom edges of the angles to allow for rotational flexibility of the girder (Refs 2 and 3) and constraints on the minimum angle leg length and the maximum angle thickness. These AISC provisions make it virtually impossible to design a welded double-angle connection for a significant tensile force. The connection is not only rotationally flexible but also axially flexible. A tension force on the connection will cause the angle legs to bend and pull away from the column face.

The tables in Appendix C provide a summary of the allowable design capacities of the WTC7 girder-to-column connections in tension and compression that were used in the code check described in Section 4.2.7. The geometry and detailing of each connection used to determine its axial capacity was taken from the latest steel shop drawing issued for that particular connection. The capacity of the seated connection type in tension is governed by the shear capacity of the fully-tightened bolts. Table 1.5.2.1 from the 1980 AISC Manual of Steel Construction (Ref 2) was used to compute the allowable tensile capacity. Its capacity in compression is governed by the fully-tightened bolt shear capacity according to Table 1.5.2.1 as well. The capacity of the double-angle header connection is governed by prying action on the bolts. The table on Page 4-88 of the 1980 AISC was used to estimate the allowable tensile capacity except where capacities
were not well above the design requirements, and the more detailed procedure on Pages 4-89 to 4-90 was used. Its compression capacity is assumed to be governed by weld failure at the girder web according to AISC Table 1.5.3. Design strengths rather than the expected strengths listed in Section 3.4 of this report were used to compute the design capacities listed in these tables as they are meant to represent the axial capacities of the connections that would have been computed by a structural engineer at the time the building was designed. The effects of vertical shear forces on the axial capacities of the connections were conservatively disregarded in the calculations.

AISC provides no direct guidance on the design of a welded double-angle connection for tension loads. An engineer designing such a connection for tension would typically assess the capacity by assuming that the ends of the angles are rotationally free as shown in Figure 4.10. The failure modes checked by the engineer would therefore include direct tension perpendicular to the axis of the fillet welds and flexural failure in the legs of the angles, with flexural yielding of the angles governing for all angle sizes used in the building (typically $4 \times 3 \times 3 / 8$'s). The allowable tension capacities listed for these connections in the tables in Appendix C are based on the bending equations in Section 1.5.1.4 of the 1980 AISC, and the compression capacities are based on fullytightened bolt shear failure according to 1980 AISC Table 1.5.2.1. Had these calculations been performed by the design team, the team would have determined that the allowable design tension capacity of this type of connection was significantly lower than necessary to function as a proper lateral brace.

Figure 4.10 Behavior assumed for assessment of tension capacity of welded double-angle connections (free body diagram and bending moments)

In fact, using the western connections to Column 79 as an example, Table 4.1 demonstrates that it is impossible to design a welded double-angle connection for 2% of the design gravity loads in Column 79 below Floor 11, even when optimal angles are used because the bending demands in the angles are too high. For this calculation, L8x4x1 angles (which are significantly larger than the actual angles used in the WTC7 building) were assumed as they were determined to be the most favorable commonlyavailable rolled angle for bending because they combine a short angle leg with a large thickness. Also, the connection depth was assumed to be the depth of the flat face of the web which is the maximum possible connection depth that could have been used.

Table 4.1 Confirmation of Impossibility to Design Western Welded Double Angle Knife Connection at Column 79 for 2\% Bracing Requirement below Floor 11

FLOOR LEVEL	$\begin{gathered} \text { 2\% TENSION FORCE DESIGN } \\ \text { REQUIREMENT BASED ON } \\ \text { DESIGN GRAVITY LOADS [KIPS] } \end{gathered}$	CONNECTION TYPE	MAX TENSION CAPACITY USING L8x4x1 [KIPS]	$\begin{aligned} & \text { MAX BRACING } \\ & \text { POSSIBLE (\% OF } \\ & \text { REQUIRED) } \end{aligned}$
Roof	6.8	Header PI		
Floor 47	10.5	Header PI		
Floor 46	14.1	Knife	143.1	1018\%
Floor 45	17.7	Knife	143.1	808\%
Floor 44	21.7	Knife	143.1	660\%
Floor 43	-	-	-	-
Floor 42	25.8	Knife	143.1	556\%
Floor 41	-	-	-	-
Floor 40	29.5	Knife	143.1	485\%
Floor 39	33.2	Knife	143.1	431\%
Floor 38	36.9	Knife	143.1	388\%
Floor 37	40.6	Knife	143.1	353\%
Floor 36	44.3	Knife	143.1	323\%
Floor 35	48.0	Knife	143.1	298\%
Floor 34	51.7	Knife	143.1	277\%
Floor 33	55.4	Knife	143.1	258\%
Floor 32	59.1	Knife	143.1	242\%
Floor 31	62.8	Knife	143.1	228\%
Floor 30	66.6	Knife	143.1	215\%
Floor 29	70.3	Knife	143.1	203\%
Floor 28	74.1	Knife	143.1	193\%
Floor 27	77.8	Knife	143.1	184\%
Floor 26	81.6	Knife	143.1	175\%
Floor 25	85.4	Knife	143.1	168\%
Floor 24	89.2	Knife	143.1	160\%
Floor 23	93.9	Knife	143.1	152\%
Floor 22	98.7	Knife	143.1	145\%
Floor 21	103.5	Knife	143.1	138\%
Floor 20	107.3	Knife	143.1	133\%
Floor 19	111.2	Knife	143.1	129\%
Floor 18	115.0	Knife	143.1	124\%
Floor 17	118.9	Knife	143.1	120\%
Floor 16	122.8	Knife	143.1	117\%
Floor 15	126.7	Knife	143.1	113\%
Floor 14	130.6	Knife	143.1	110\%
Floor 13	134.5	Knife	143.1	106\%
Floor 12	138.4	Knife	143.1	103\%
Floor 11	142.3	Knife	143.1	101\%
Floor 10	146.2	Knife	143.1	98\%
Floor 9	150.2	Knife	143.1	95\%
Floor 8	154.1	Knife	143.1	93\%
Floor 7	159.2	Knife	94.7	59\%
Floor 6	162.1	Knife	82.4	51\%
Floor 5	170.0	Knife	131.9	78\%
Floor 4	175.9	Knife	118.7	67\%
Floor 3	180.5	-	-	-
Floor 2	184.4	-	-	-

Tensile capacity in girder-to-column connections that brace interior columns is especially critical for columns that are not braced on all four sides. Four-sided bracing by girders that are composite with the concrete slab can generally provide adequate lateral force resistance through compression on the girders on two orthogonal sides of the column. The unpaired connection in a column braced on only three sides, however, must provide lateral force resistance in both tension and compression if the concrete slab is not detailed to provide direct bracing capacity.

The structural framing plan for typical floors illustrates that twelve of the twenty-four interior columns used in the WTC7 structure were braced on only three sides, and therefore their unpaired connections were subject to the 2\% force requirement in both tension and compression (Figure 4.11). Among these twelve three-sided cases on a typical floor level, ten of the unpaired connections were welded double-angle knife connections that were extremely weak in tension including Columns 79 and 80.

Prior to floor failure on 11 September 2001, tenuous stability of these vulnerable columns likely resulted from a few inadvertent, indirect load paths through which the surrounding intact floor slab permitted bracing of the columns, even though the slab itself did not directly brace them. In addition to the direct bracing provided by the girder-to-column connections, which should have been designed to provide the full bracing capacity requirement, possible accidental bracing mechanisms may have included:

- Resistance from the orthogonal girders framing into the column (Action 1): horizontal shear transfer from the column to the girder web through the connection causes the girder to bend as a cantilever back to the closest floor beam framing into the girder (Figure 4.12)
- Resistance from the orthogonal girders framing into the column (Action 2): shear horizontal transfer from the column to the girder web through the connection induces torsion in the girder to transfer shear to the top flange of the girder and into the concrete slab through the shear studs (Figure 4.13)

Because these accidental column bracing mechanisms were activated by the presence of a surrounding intact concrete slab, when the slab was lost on one side of a column, these secondary load paths also disappeared.

Figure 4.11 Typical WTC7 floor framing plan (red dots indicate knife connections which are vulnerable in tension; yellow dots indicate seated or header connections; blue boxes indicate interior columns with three-sided bracing)

JA-3940

Figure 4.12 Diagram of accidental lateral bracing provided by minor axis bending of orthogonal girders when floor beams are present to provide reactions (configuration similar to Column 70 at core shown, deformations exaggerated)

Figure 4.13 Diagram of inadvertent lateral bracing provided by torsional behavior of orthogonal girders when slab is intact (configuration similar to Column 70 at core shown, deformations exaggerated)

4.2.7 \quad Violation of Code Requirement

As a result of the extensive use of welded double angle girder-to-column connections and three-sided interior column bracing as well as the lack of connection between the interior columns and concrete slab, over 46\% percent of the floor-to-interior column joints in the building did not meet the 2% code requirement in at least one direction.

Tables 4.2 through 4.25 summarize the results of the lateral bracing design code check for all interior columns in the building. All rows highlighted in orange represent lateral bracing design code violations. The tables in Appendix C provide additional details regarding the axial capacity of each connection providing lateral bracing. In Tables 4.2 through 4.25, "No info" refers to a girder-to-column connection for which no information was available. "NC" refers to a girder-to-column connection whose capacity was not checked. These connections were typically large gusset plate connections to interior braced frames or trusses, so it can be reasonably assumed that they had sufficient axial capacity to meet the 2% requirement.

The column design loads listed in Tables 4.2 through 4.25 that were used to determine the code bracing force requirements were taken from the SAP2000 global model rather than the column schedule on Sheet S-17 of the structural construction documents. A comparison of the values shows that the values from the SAP2000 model are consistently less than the values in the column schedule; therefore, the code check is conservative and the number of code violations is a lower-bound estimate.
4.2.8 Relevance to Global Collapse

This evaluation of the lateral bracing condition of the WTC7 interior columns demonstrates that even prior to the initiation of local floor slab collapse, the building was in a tenuous state, and many of the interior columns were already vulnerable to buckling. Section 5.0 explains how the inadequate bracing of the interior columns was directly responsible for the progression of global collapse.

Table 4.2 Column 58 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	Load in Column [Kip]
Roof	90	1.8	98.5	143.2
Floor 47	322	6.4	8.1	256.7
Floor 46	455	9.1	157.3	209.8
Floor 45	579	11.6	96.4	136.4
Floor 44	701	14.0	96.4	116.7
Floor 43	825	16.5	96.4	136.4
Floor 42	947	18.9	96.4	116.7
Floor 41	1071	21.4	96.4	136.4
Floor 40	1194	23.9	96.4	116.7
Floor 39	1270	25.4	96.4	136.4
Floor 38	1393	27.9	96.4	116.7
Floor 37	1518	30.4	96.4	136.4
Floor 36	1641	32.8	96.4	116.7
Floor 35	1765	35.3	96.4	136.4
Floor 34	1889	37.8	96.4	116.7
Floor 33	2014	40.3	96.4	136.4
Floor 32	2139	42.8	96.4	116.7
Floor 31	2264	45.3	96.4	136.4
Floor 30	2389	47.8	96.4	116.7
Floor 29	2515	50.3	96.4	136.4
Floor 28	2641	52.8	96.4	116.7
Floor 27	2768	55.4	96.4	136.4
Floor 26	2894	57.9	96.4	116.7
Floor 25	3021	60.4	96.4	136.4
Floor 24	3147	62.9	96.4	116.7
Floor 23	3307	66.1	96.4	136.4
Floor 22	3466	69.3	96.4	116.7
Floor 21	3627	72.5	96.4	136.4
Floor 20	3758	75.2	96.4	116.7
Floor 19	3891	77.8	96.4	136.4
Floor 18	4019	80.4	96.4	116.7
Floor 17	4148	83.0	96.4	136.4
Floor 16	4277	85.5	96.4	116.7
Floor 15	4407	88.1	96.4	136.4
Floor 14	4535	90.7	96.4	116.7
Floor 13	4666	93.3	96.4	136.4
Floor 12	4795	95.9	96.4	116.7
Floor 11	4927	98.5	96.4	136.4
Floor 10	5061	101.2	96.4	116.7
Floor 9	5192	103.8	96.4	136.4
Floor 8	5323	106.5	96.4	116.7
Floor 7	-	-	-	-
Floor 6	-	-	-	-
Floor 5	-	-	-	-
Floor 4	-	-	-	-
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.3 Column 59 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	94	1.9	71.1	13.8
Floor 47	149	3.0	71.1	11.0
Floor 46	205	4.1	71.1	11.0
Floor 45	262	5.2	71.1	11.0
Floor 44	318	6.4	71.1	11.0
Floor 43	375	7.5	71.1	No info
Floor 42	431	8.6	71.1	11.0
Floor 41	487	9.7	71.1	No info
Floor 40	544	10.9	71.1	11.0
Floor 39	601	12.0	71.1	No info
Floor 38	657	13.1	71.1	11.0
Floor 37	714	14.3	71.1	11.0
Floor 36	771	15.4	71.1	11.0
Floor 35	828	16.6	71.1	11.0
Floor 34	885	17.7	71.1	11.0
Floor 33	942	18.8	71.1	11.0
Floor 32	999	20.0	71.1	11.0
Floor 31	1056	21.1	71.1	11.0
Floor 30	1114	22.3	71.1	11.0
Floor 29	1171	23.4	71.1	11.0
Floor 28	1229	24.6	71.1	11.0
Floor 27	1287	25.7	71.1	11.0
Floor 26	1345	26.9	71.1	11.0
Floor 25	1403	28.1	71.1	11.0
Floor 24	1462	29.2	71.1	11.0
Floor 23	1536	30.7	71.1	11.0
Floor 22	1609	32.2	71.1	11.0
Floor 21	1684	33.7	71.1	11.0
Floor 20	1743	34.9	71.1	11.0
Floor 19	1802	36.0	71.1	11.0
Floor 18	1861	37.2	71.1	11.0
Floor 17	1921	38.4	71.1	11.0
Floor 16	1980	39.6	71.1	11.0
Floor 15	2040	40.8	71.1	11.0
Floor 14	2100	42.0	71.1	11.0
Floor 13	2160	43.2	71.1	11.0
Floor 12	2220	44.4	71.1	11.0
Floor 11	2281	45.6	71.1	11.0
Floor 10	2343	46.9	71.1	11.0
Floor 9	2404	48.1	71.1	11.0
Floor 8	2465	49.3	71.1	11.0
Floor 7	-	-	-	-
Floor 6	-	-	-	-
Floor 5	-	-	-	-
Floor 4	-	-	-	-
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.4 Column 60 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	23	0.5	71.1	136.0
Floor 47	75	1.5	71.1	10.7
Floor 46	126	2.5	71.1	16.3
Floor 45	185	3.7	71.1	10.7
Floor 44	245	4.9	71.1	10.7
Floor 43	304	6.1	71.1	10.7
Floor 42	363	7.3	71.1	10.7
Floor 41	423	8.5	71.1	10.7
Floor 40	482	9.6	71.1	10.7
Floor 39	542	10.8	71.1	10.7
Floor 38	602	12.0	71.1	10.7
Floor 37	662	13.2	71.1	10.7
Floor 36	723	14.5	71.1	10.7
Floor 35	784	15.7	71.1	10.7
Floor 34	845	16.9	71.1	10.7
Floor 33	905	18.1	71.1	10.7
Floor 32	966	19.3	71.1	10.7
Floor 31	1028	20.6	71.1	10.7
Floor 30	1089	21.8	71.1	10.7
Floor 29	1151	23.0	71.1	10.7
Floor 28	1213	24.3	71.1	10.7
Floor 27	1275	25.5	71.1	10.7
Floor 26	1337	26.7	71.1	10.7
Floor 25	1398	28.0	71.1	10.7
Floor 24	1461	29.2	71.1	10.7
Floor 23	1540	30.8	71.1	10.7
Floor 22	1619	32.4	71.1	10.7
Floor 21	1699	34.0	71.1	10.7
Floor 20	1763	35.3	71.1	10.7
Floor 19	1827	36.5	71.1	10.7
Floor 18	1891	37.8	71.1	10.7
Floor 17	1954	39.1	71.1	10.7
Floor 16	2018	40.4	71.1	10.7
Floor 15	2083	41.7	71.1	10.7
Floor 14	2147	42.9	71.1	10.7
Floor 13	2212	44.2	71.1	10.7
Floor 12	2277	45.5	71.1	10.7
Floor 11	2342	46.8	71.1	10.7
Floor 10	2408	48.2	71.1	10.7
Floor 9	2473	49.5	71.1	10.7
Floor 8	2539	50.8	71.1	10.7
Floor 7	2678	53.6	75.4	11.6
Floor 6	2721	54.4	92.1	112.2
Floor 5	2883	57.7	116.2	69.5
Floor 4	2988	59.8	94.3	No info
Floor 3	3174	63.5	166.1	40.4
Floor 2	3257	65.1	96.7	25.0

Table 4.5 Column 61 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	213	4.3	92.1	No info
Floor 47	353	7.1	71.1	214.2
Floor 46	459	9.2	96.4	301.4
Floor 45	543	10.9	50.1	158.7
Floor 44	626	12.5	50.1	138.9
Floor 43	710	14.2	50.1	158.7
Floor 42	792	15.8	50.1	138.9
Floor 41	875	17.5	50.1	158.7
Floor 40	958	19.2	50.1	138.9
Floor 39	1041	20.8	50.1	158.7
Floor 38	1123	22.5	50.1	138.9
Floor 37	1206	24.1	50.1	158.7
Floor 36	1288	25.8	50.1	138.9
Floor 35	1371	27.4	50.1	158.7
Floor 34	1454	29.1	50.1	138.9
Floor 33	1538	30.8	50.1	158.7
Floor 32	1621	32.4	50.1	138.9
Floor 31	1705	34.1	50.1	158.7
Floor 30	1788	35.8	50.1	138.9
Floor 29	1872	37.4	50.1	158.7
Floor 28	1956	39.1	50.1	138.9
Floor 27	2040	40.8	50.1	158.7
Floor 26	2124	42.5	50.1	138.9
Floor 25	2208	44.2	50.1	158.7
Floor 24	2292	45.8	50.1	138.9
Floor 23	2397	47.9	50.1	158.7
Floor 22	2501	50.0	50.1	138.9
Floor 21	2607	52.1	50.1	158.7
Floor 20	2690	53.8	50.1	138.9
Floor 19	2774	55.5	50.1	158.7
Floor 18	2859	57.2	50.1	138.9
Floor 17	2945	58.9	50.1	158.7
Floor 16	3030	60.6	50.1	138.9
Floor 15	3116	62.3	50.1	158.7
Floor 14	3201	64.0	50.1	138.9
Floor 13	3288	65.8	50.1	158.7
Floor 12	3373	67.5	50.1	138.9
Floor 11	3459	69.2	50.1	158.7
Floor 10	3543	70.9	50.1	138.9
Floor 9	3629	72.6	50.1	158.7
Floor 8	3715	74.3	50.1	138.9
Floor 7	2349	47.0	NC	208.1
Floor 6	1001	20.0	NC	200.8
Floor 5	959	19.2	NC	223.1
Floor 4	1084	21.7	73.3	222.9
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.6 Column 62 Lateral Bracing Code Check (no code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	239	4.8	167.8	199.6
Floor 47	208	4.2	73.3	121.4
Floor 46	256	5.1	71.1	96.2
Floor 45	299	6.0	71.1	100.4
Floor 44	342	6.8	71.1	100.4
Floor 43	385	7.7	71.1	No info
Floor 42	428	8.6	71.1	100.4
Floor 41	471	9.4	71.1	No info
Floor 40	513	10.3	71.1	100.4
Floor 39	556	11.1	71.1	No info
Floor 38	599	12.0	71.1	100.4
Floor 37	641	12.8	71.1	100.4
Floor 36	684	13.7	71.1	100.4
Floor 35	726	14.5	71.1	100.4
Floor 34	769	15.4	71.1	100.4
Floor 33	812	16.2	71.1	100.4
Floor 32	855	17.1	71.1	100.4
Floor 31	898	18.0	71.1	100.4
Floor 30	941	18.8	71.1	100.4
Floor 29	985	19.7	71.1	100.4
Floor 28	1028	20.6	71.1	100.4
Floor 27	1071	21.4	71.1	100.4
Floor 26	1115	22.3	71.1	100.4
Floor 25	1159	23.2	71.1	100.4
Floor 24	1203	24.1	71.1	100.4
Floor 23	1299	26.0	71.1	100.4
Floor 22	1354	27.1	71.1	100.4
Floor 21	1409	28.2	71.1	100.4
Floor 20	1452	29.0	71.1	100.4
Floor 19	1497	29.9	71.1	100.4
Floor 18	1541	30.8	71.1	100.4
Floor 17	1586	31.7	71.1	100.4
Floor 16	1631	32.6	71.1	100.4
Floor 15	1676	33.5	71.1	100.4
Floor 14	1721	34.4	71.1	100.4
Floor 13	1766	35.3	71.1	100.4
Floor 12	1811	36.2	71.1	100.4
Floor 11	1856	37.1	71.1	100.4
Floor 10	1901	38.0	71.1	100.4
Floor 9	1946	38.9	71.1	100.4
Floor 8	1991	39.8	71.1	100.4
Floor 7	2002	40.0	69.0	134.2
Floor 6	1393	27.9	NC	104.7
Floor 5	1058	21.2	NC	119.0
Floor 4	1130	22.6	69.0	86.1
Floor 3	1181	23.6	83.0	116.0
Floor 2	1235	24.7	94.6	120.2

Table 4.7 Column 63 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	21	0.4	96.2	138.9
Floor 47	63	1.3	NC	147.5
Floor 46	100	2.0	88.0	156.9
Floor 45	157	3.1	48.0	131.5
Floor 44	213	4.3	48.0	131.5
Floor 43	269	5.4	48.0	131.5
Floor 42	325	6.5	48.0	131.5
Floor 41	381	7.6	48.0	131.5
Floor 40	438	8.8	48.0	131.5
Floor 39	494	9.9	48.0	131.5
Floor 38	551	11.0	48.0	131.5
Floor 37	608	12.2	48.0	116.7
Floor 36	665	13.3	48.0	131.5
Floor 35	722	14.4	48.0	131.5
Floor 34	779	15.6	48.0	131.5
Floor 33	837	16.7	48.0	131.5
Floor 32	894	17.9	48.0	131.5
Floor 31	952	19.0	48.0	131.5
Floor 30	1010	20.2	48.0	131.5
Floor 29	1069	21.4	48.0	131.5
Floor 28	1127	22.5	48.0	131.5
Floor 27	1186	23.7	48.0	131.5
Floor 26	1244	24.9	48.0	131.5
Floor 25	1302	26.0	48.0	131.5
Floor 24	1361	27.2	48.0	131.5
Floor 23	1434	28.7	48.0	138.9
Floor 22	1507	30.1	48.0	138.9
Floor 21	1581	31.6	48.0	138.9
Floor 20	1640	32.8	48.0	131.5
Floor 19	1699	34.0	48.0	131.5
Floor 18	1759	35.2	48.0	131.5
Floor 17	1819	36.4	48.0	131.5
Floor 16	1879	37.6	48.0	131.5
Floor 15	1939	38.8	48.0	131.5
Floor 14	1999	40.0	48.0	131.5
Floor 13	2059	41.2	48.0	131.5
Floor 12	2119	42.4	48.0	131.5
Floor 11	2180	43.6	48.0	131.5
Floor 10	2235	44.7	48.0	131.5
Floor 9	2296	45.9	48.0	131.5
Floor 8	2357	47.1	48.0	131.5
Floor 7	2478	49.6	71.1	138.9
Floor 6	2532	50.6	207.6	117.8
Floor 5	2703	54.1	73.3	331.2
Floor 4	2752	55.0	6.0	116.7
Floor 3	2865	57.3	71.5	195.5
Floor 2	2923	58.5	6.4	12.2

Table 4.8 Column 64 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	184	3.7	10.3	NC
Floor 47	254	5.1	14.0	232.8
Floor 46	389	7.8	6.0	339.2
Floor 45	472	9.4	6.0	138.9
Floor 44	555	11.1	6.0	138.9
Floor 43	638	12.8	6.0	138.9
Floor 42	719	14.4	6.0	138.9
Floor 41	801	16.0	6.0	138.9
Floor 40	883	17.7	6.0	138.9
Floor 39	965	19.3	6.0	138.9
Floor 38	1046	20.9	6.0	138.9
Floor 37	1128	22.6	6.0	138.9
Floor 36	1210	24.2	6.0	138.9
Floor 35	1292	25.8	6.0	138.9
Floor 34	1374	27.5	6.0	138.9
Floor 33	1456	29.1	6.0	No info
Floor 32	1538	30.8	6.0	No info
Floor 31	1620	32.4	6.0	No info
Floor 30	1702	34.0	6.0	No info
Floor 29	1785	35.7	6.0	138.9
Floor 28	1868	37.4	6.0	138.9
Floor 27	1950	39.0	6.0	138.9
Floor 26	2033	40.7	6.0	138.9
Floor 25	2116	42.3	6.0	138.9
Floor 24	2199	44.0	6.0	138.9
Floor 23	2303	46.1	6.0	143.2
Floor 22	2407	48.1	6.0	143.2
Floor 21	2512	50.2	6.0	138.9
Floor 20	2597	51.9	6.0	138.9
Floor 19	2682	53.6	6.0	138.9
Floor 18	2766	55.3	6.0	138.9
Floor 17	2851	57.0	6.0	138.9
Floor 16	2936	58.7	6.0	138.9
Floor 15	3021	60.4	6.0	138.9
Floor 14	3106	62.1	6.0	138.9
Floor 13	3192	63.8	6.0	138.9
Floor 12	3278	65.6	6.0	138.9
Floor 11	3363	67.3	6.0	138.9
Floor 10	3450	69.0	6.0	138.9
Floor 9	3537	70.7	6.0	138.9
Floor 8	3623	72.5	6.0	138.9
Floor 7	3306	66.1	NC	NC
Floor 6	3306	66.1	86.5	NC
Floor 5	3219	64.4	NC	NC
Floor 4	3371	67.4	86.5	NC
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.9 Column 65 Lateral Bracing Code Check (no code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	213	4.3	117.4	197.3
Floor 47	297	5.9	203.0	160.4
Floor 46	317	6.3	69.0	143.2
Floor 45	338	6.8	69.0	138.9
Floor 44	359	7.2	69.0	138.9
Floor 43	380	7.6	69.0	138.9
Floor 42	401	8.0	69.0	138.9
Floor 41	421	8.4	69.0	138.9
Floor 40	442	8.8	69.0	138.9
Floor 39	463	9.3	69.0	138.9
Floor 38	483	9.7	69.0	138.9
Floor 37	504	10.1	69.0	138.9
Floor 36	525	10.5	69.0	138.9
Floor 35	545	10.9	69.0	No info
Floor 34	566	11.3	69.0	No info
Floor 33	587	11.7	69.0	No info
Floor 32	607	12.1	69.0	No info
Floor 31	628	12.6	69.0	138.9
Floor 30	649	13.0	69.0	138.9
Floor 29	669	13.4	69.0	138.9
Floor 28	690	13.8	69.0	138.9
Floor 27	711	14.2	69.0	138.9
Floor 26	731	14.6	69.0	138.9
Floor 25	752	15.0	69.0	138.9
Floor 24	773	15.5	69.0	138.9
Floor 23	799	16.0	69.0	138.9
Floor 22	824	16.5	69.0	138.9
Floor 21	850	17.0	69.0	138.9
Floor 20	871	17.4	69.0	138.9
Floor 19	893	17.9	69.0	138.9
Floor 18	914	18.3	69.0	138.9
Floor 17	935	18.7	69.0	138.9
Floor 16	956	19.1	69.0	138.9
Floor 15	978	19.6	69.0	138.9
Floor 14	999	20.0	69.0	138.9
Floor 13	1021	20.4	69.0	138.9
Floor 12	1042	20.8	69.0	138.9
Floor 11	1064	21.3	69.0	138.9
Floor 10	1086	21.7	69.0	138.9
Floor 9	1107	22.1	69.0	138.9
Floor 8	1129	22.6	69.0	138.9
Floor 7	1166	23.3	NC	116.7
Floor 6	1197	23.9	207.6	140.4
Floor 5	1012	20.2	NC	164.7
Floor 4	1031	20.6	207.6	116.7
Floor 3	1578	31.6	NC	208.1
Floor 2	1606	32.1	321.5	147.5

Table 4.10 Column 66 Lateral Bracing Code Check (orange indicates code violations)

| Floor |
| :--- | :---: | :---: | :---: | :---: |
| Level | | Design Compression |
| :---: |
| Load in Column |
| [Kip] | | Required 2\% Bracing |
| :---: |
| Force |
| [Kip] |\quad| Total Bracing Capacity Provided
 to the Column | |
| :---: | :---: |

Guy Nordenson and Associates

Table 4.11 Column 67 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	118	2.4	6.0	186.9
Floor 47	184	3.7	14.0	174.1
Floor 46	356	7.1	6.0	401.8
Floor 45	466	9.3	10.3	196.3
Floor 44	569	11.4	6.0	161.2
Floor 43	653	13.1	6.0	183.5
Floor 42	756	15.1	6.0	161.2
Floor 41	845	16.9	6.0	183.5
Floor 40	947	18.9	6.0	161.2
Floor 39	1050	21.0	6.0	183.5
Floor 38	1153	23.1	6.0	161.2
Floor 37	1269	25.4	42.0	365.5
Floor 36	1360	27.2	6.0	138.9
Floor 35	1452	29.0	6.0	197.4
Floor 34	1543	30.9	6.0	138.9
Floor 33	1635	32.7	6.0	No info
Floor 32	1727	34.5	6.0	No info
Floor 31	1822	36.4	6.0	No info
Floor 30	1918	38.4	12.6	No info
Floor 29	2011	40.2	6.0	197.4
Floor 28	2103	42.1	6.0	138.9
Floor 27	2196	43.9	6.0	197.4
Floor 26	2288	45.8	6.0	138.9
Floor 25	2382	47.6	6.0	197.4
Floor 24	2475	49.5	6.0	138.9
Floor 23	2592	51.8	6.0	229.5
Floor 22	2709	54.2	6.0	165.5
Floor 21	2826	56.5	6.0	225.2
Floor 20	2920	58.4	6.0	138.9
Floor 19	3015	60.3	6.0	197.4
Floor 18	3110	62.2	6.0	138.9
Floor 17	3205	64.1	6.0	197.4
Floor 16	3300	66.0	6.0	138.9
Floor 15	3396	67.9	6.0	197.4
Floor 14	3491	69.8	6.0	138.9
Floor 13	3587	71.7	6.0	197.4
Floor 12	3682	73.6	6.0	138.9
Floor 11	3778	75.6	6.0	197.4
Floor 10	3875	77.5	6.0	138.9
Floor 9	3972	79.4	6.0	197.4
Floor 8	4068	81.4	6.0	NC
Floor 7	3664	73.3	NC	NC
Floor 6	3610	72.2	121.1	NC
Floor 5	3458	69.2	NC	NC
Floor 4	3643	72.9	86.5	NC
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.12 Column 68 Lateral Bracing Code Check (no code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	141	2.8	69.0	138.9
Floor 47	238	4.8	140.0	169.8
Floor 46	303	6.1	69.0	165.5
Floor 45	365	7.3	69.0	151.8
Floor 44	414	8.3	69.0	138.9
Floor 43	465	9.3	69.0	143.2
Floor 42	513	10.3	69.0	138.9
Floor 41	564	11.3	69.0	143.2
Floor 40	612	12.2	69.0	138.9
Floor 39	663	13.3	69.0	143.2
Floor 38	711	14.2	69.0	138.9
Floor 37	774	15.5	48.0	164.7
Floor 36	816	16.3	69.0	138.9
Floor 35	860	17.2	69.0	No info
Floor 34	902	18.0	69.0	No info
Floor 33	946	18.9	69.0	No info
Floor 32	988	19.8	69.0	No info
Floor 31	1039	20.8	69.0	151.8
Floor 30	1094	21.9	201.6	164.7
Floor 29	1126	22.5	69.0	152.5
Floor 28	1156	23.1	69.0	138.9
Floor 27	1188	23.8	69.0	152.5
Floor 26	1218	24.4	69.0	138.9
Floor 25	1249	25.0	69.0	152.5
Floor 24	1280	25.6	69.0	138.9
Floor 23	1319	26.4	69.0	152.5
Floor 22	1356	27.1	69.0	138.9
Floor 21	1395	27.9	69.0	152.5
Floor 20	1425	28.5	69.0	138.9
Floor 19	1457	29.1	69.0	152.5
Floor 18	1488	29.8	69.0	138.9
Floor 17	1520	30.4	69.0	152.5
Floor 16	1551	31.0	69.0	138.9
Floor 15	1583	31.7	69.0	152.5
Floor 14	1614	32.3	69.0	112.4
Floor 13	1646	32.9	69.0	152.5
Floor 12	1677	33.5	69.0	138.9
Floor 11	1710	34.2	69.0	152.5
Floor 10	1741	34.8	69.0	138.9
Floor 9	1774	35.5	69.0	152.5
Floor 8	1806	36.1	69.0	138.9
Floor 7	1782	35.6	NC	121.0
Floor 6	1824	36.5	207.6	147.8
Floor 5	1425	28.5	NC	298.3
Floor 4	1436	28.7	207.6	112.4
Floor 3	1958	39.2	NC	245.2
Floor 2	1987	39.7	321.5	192.1

Guy Nordenson and Associates

Table 4.13 Column 69 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	42	0.8	6.0	138.9
Floor 47	84	1.7	12.4	169.8
Floor 46	136	2.7	6.0	222.9
Floor 45	208	4.2	6.0	143.2
Floor 44	275	5.5	6.0	138.9
Floor 43	331	6.6	6.0	No info
Floor 42	398	8.0	6.0	No info
Floor 41	458	9.2	6.0	No info
Floor 40	525	10.5	6.0	No info
Floor 39	593	11.9	6.0	No info
Floor 38	660	13.2	6.0	138.9
Floor 37	728	14.6	6.0	138.9
Floor 36	795	15.9	6.0	138.9
Floor 35	863	17.3	6.0	138.9
Floor 34	931	18.6	6.0	138.9
Floor 33	1000	20.0	6.0	138.9
Floor 32	1068	21.4	6.0	138.9
Floor 31	1141	22.8	6.0	138.9
Floor 30	1216	24.3	12.6	156.1
Floor 29	1278	25.6	6.0	138.9
Floor 28	1340	26.8	6.0	138.9
Floor 27	1402	28.0	6.0	138.9
Floor 26	1463	29.3	6.0	138.9
Floor 25	1525	30.5	6.0	138.9
Floor 24	1587	31.7	6.0	138.9
Floor 23	1664	33.3	6.0	138.9
Floor 22	1742	34.8	6.0	138.9
Floor 21	1820	36.4	6.0	138.9
Floor 20	1882	37.6	6.0	138.9
Floor 19	1944	38.9	6.0	138.9
Floor 18	2006	40.1	6.0	138.9
Floor 17	2069	41.4	6.0	138.9
Floor 16	2131	42.6	6.0	138.9
Floor 15	2194	43.9	6.0	138.9
Floor 14	2257	45.1	6.0	112.4
Floor 13	2321	46.4	6.0	138.9
Floor 12	2384	47.7	6.0	138.9
Floor 11	2447	48.9	6.0	138.9
Floor 10	2511	50.2	6.0	138.9
Floor 9	2574	51.5	6.0	138.9
Floor 8	2638	52.8	6.0	138.9
Floor 7	2452	49.0	NC	NC
Floor 6	2574	51.5	121.1	NC
Floor 5	2127	42.5	NC	NC
Floor 4	2028	40.6	121.1	NC
Floor 3	2677	53.5	NC	NC
Floor 2	3250	65.0	121.1	NC

Guy Nordenson and Associates

Table 4.14 Column 70 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	80	1.6	6.0	169.8
Floor 47	124	2.5	10.3	165.5
Floor 46	357	7.1	12.4	384.7
Floor 45	499	10.0	12.4	174.1
Floor 44	627	12.5	12.4	174.1
Floor 43	670	13.4	12.4	25.0
Floor 42	813	16.3	12.4	174.1
Floor 41	863	17.3	12.4	25.0
Floor 40	1014	20.3	12.4	174.1
Floor 39	1134	22.7	12.4	196.3
Floor 38	1255	25.1	12.4	174.1
Floor 37	1388	27.8	10.6	269.0
Floor 36	1494	29.9	10.3	151.8
Floor 35	1601	32.0	10.3	210.3
Floor 34	1707	34.1	10.3	151.8
Floor 33	1815	36.3	10.3	210.3
Floor 32	1921	38.4	10.3	151.8
Floor 31	2031	40.6	10.3	225.5
Floor 30	2141	42.8	10.3	174.1
Floor 29	2249	45.0	10.3	210.3
Floor 28	2358	47.2	10.3	151.8
Floor 27	2467	49.3	10.3	210.3
Floor 26	2577	51.5	10.3	151.8
Floor 25	2687	53.7	10.3	210.3
Floor 24	2795	55.9	10.3	147.5
Floor 23	2941	58.8	8.1	203.3
Floor 22	3085	61.7	6.0	165.5
Floor 21	3230	64.6	6.0	181.0
Floor 20	3344	66.9	6.0	143.2
Floor 19	3458	69.2	6.0	174.8
Floor 18	3573	71.5	6.0	143.2
Floor 17	3688	73.8	6.0	174.8
Floor 16	3809	76.2	6.0	147.5
Floor 15	3939	78.8	42.0	72.0
Floor 14	4040	80.8	6.0	138.9
Floor 13	4143	82.9	6.0	152.5
Floor 12	4245	84.9	6.0	138.9
Floor 11	4349	87.0	6.0	152.5
Floor 10	4452	89.0	6.0	138.9
Floor 9	4556	91.1	6.0	152.5
Floor 8	4659	93.2	6.0	138.9
Floor 7	4270	85.4	NC	795.8
Floor 6	4214	84.3	86.5	NC
Floor 5	4104	82.1	NC	NC
Floor 4	4318	86.4	86.5	NC
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Table 4.15 Column 71 Lateral Bracing Code Check (no code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	105	2.1	69.0	138.9
Floor 47	170	3.4	94.3	178.4
Floor 46	254	5.1	96.4	169.8
Floor 45	334	6.7	75.4	174.1
Floor 44	398	8.0	75.4	143.2
Floor 43	436	8.7	75.4	165.5
Floor 42	518	10.4	75.4	143.2
Floor 41	553	11.1	75.4	165.5
Floor 40	646	12.9	75.4	143.2
Floor 39	715	14.3	76.1	165.5
Floor 38	783	15.7	76.1	143.2
Floor 37	864	17.3	72.8	186.9
Floor 36	919	18.4	73.3	143.2
Floor 35	976	19.5	73.3	174.8
Floor 34	1032	20.6	73.3	143.2
Floor 33	1089	21.8	73.3	174.8
Floor 32	1146	22.9	73.3	143.2
Floor 31	1209	24.2	73.3	174.1
Floor 30	1276	25.5	119.0	186.9
Floor 29	1324	26.5	73.3	174.8
Floor 28	1372	27.4	73.3	143.2
Floor 27	1421	28.4	73.3	174.8
Floor 26	1469	29.4	73.3	143.2
Floor 25	1518	30.4	73.3	174.8
Floor 24	1566	31.3	73.3	143.2
Floor 23	1637	32.7	96.6	223.1
Floor 22	1690	33.8	69.0	143.2
Floor 21	1744	34.9	69.0	174.8
Floor 20	1786	35.7	69.0	138.9
Floor 19	1831	36.6	69.0	152.5
Floor 18	1874	37.5	69.0	138.9
Floor 17	1919	38.4	69.0	152.5
Floor 16	1968	39.4	69.0	147.5
Floor 15	2026	40.5	48.0	214.6
Floor 14	2058	41.2	69.0	116.7
Floor 13	2089	41.8	69.0	152.5
Floor 12	2121	42.4	69.0	138.9
Floor 11	2154	43.1	69.0	152.5
Floor 10	2185	43.7	69.0	138.9
Floor 9	2218	44.4	69.0	152.5
Floor 8	2250	45.0	69.0	138.9
Floor 7	2175	43.5	NC	143.2
Floor 6	2213	44.3	207.6	140.4
Floor 5	1682	33.6	NC	298.3
Floor 4	1707	34.1	207.6	111.6
Floor 3	2232	44.6	NC	245.2
Floor 2	2262	45.2	321.5	147.5

Guy Nordenson and Associates

Table 4.16 Column 72 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	39	0.8	6.0	138.9
Floor 47	85	1.7	8.1	178.4
Floor 46	170	3.4	8.1	275.3
Floor 45	253	5.1	6.0	178.4
Floor 44	331	6.6	6.0	156.1
Floor 43	361	7.2	6.0	No info
Floor 42	454	9.1	6.0	No info
Floor 41	493	9.9	6.0	No info
Floor 40	597	11.9	6.0	No info
Floor 39	676	13.5	6.0	156.1
Floor 38	756	15.1	6.0	156.1
Floor 37	836	16.7	6.0	156.1
Floor 36	916	18.3	6.0	156.1
Floor 35	997	19.9	6.0	156.1
Floor 34	1078	21.6	6.0	156.1
Floor 33	1159	23.2	6.0	156.1
Floor 32	1241	24.8	6.0	156.1
Floor 31	1327	26.5	6.0	156.1
Floor 30	1415	28.3	14.0	245.2
Floor 29	1489	29.8	6.0	156.1
Floor 28	1562	31.2	6.0	156.1
Floor 27	1636	32.7	6.0	156.1
Floor 26	1709	34.2	6.0	156.1
Floor 25	1783	35.7	6.0	156.1
Floor 24	1854	37.1	6.0	138.9
Floor 23	1946	38.9	11.2	156.1
Floor 22	2026	40.5	6.0	138.9
Floor 21	2105	42.1	6.0	138.9
Floor 20	2169	43.4	6.0	138.9
Floor 19	2233	44.7	6.0	138.9
Floor 18	2297	45.9	6.0	138.9
Floor 17	2361	47.2	6.0	138.9
Floor 16	2425	48.5	6.0	138.9
Floor 15	2489	49.8	6.0	138.9
Floor 14	2554	51.1	6.0	116.7
Floor 13	2619	52.4	6.0	138.9
Floor 12	2683	53.7	6.0	138.9
Floor 11	2748	55.0	6.0	138.9
Floor 10	2814	56.3	6.0	138.9
Floor 9	2879	57.6	6.0	138.9
Floor 8	2944	58.9	6.0	138.9
Floor 7	2740	54.8	NC	267.0
Floor 6	2856	57.1	121.1	NC
Floor 5	2306	46.1	NC	NC
Floor 4	2156	43.1	121.1	NC
Floor 3	2855	57.1	NC	NC
Floor 2	3590	71.8	121.1	NC

Guy Nordenson and Associates

Table 4.17 Column 73 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	101	2.0	75.4	165.5
Floor 47	147	2.9	10.3	165.5
Floor 46	325	6.5	12.4	412.6
Floor 45	441	8.8	10.3	196.3
Floor 44	554	11.1	10.3	196.3
Floor 43	555	-	-	-
Floor 42	681	13.6	10.3	196.3
Floor 41	683	-	-	-
Floor 40	816	16.3	10.3	196.3
Floor 39	933	18.7	10.3	196.3
Floor 38	1050	21.0	10.3	196.3
Floor 37	1168	23.4	10.3	196.3
Floor 36	1287	25.7	10.3	196.3
Floor 35	1406	28.1	10.3	196.3
Floor 34	1526	30.5	10.3	196.3
Floor 33	1646	32.9	10.3	196.3
Floor 32	1766	35.3	10.3	196.3
Floor 31	1886	37.7	10.3	196.3
Floor 30	2007	40.1	10.3	196.3
Floor 29	2128	42.6	10.3	196.3
Floor 28	2249	45.0	10.3	196.3
Floor 27	2370	47.4	10.3	196.3
Floor 26	2492	49.8	10.3	196.3
Floor 25	2614	52.3	10.3	196.3
Floor 24	2740	54.8	12.4	200.6
Floor 23	2887	57.7	14.5	200.6
Floor 22	3027	60.5	10.3	178.4
Floor 21	3168	63.4	10.3	52.3
Floor 20	3284	65.7	10.3	52.3
Floor 19	3400	68.0	10.3	52.3
Floor 18	3516	70.3	10.3	52.3
Floor 17	3633	72.7	10.3	52.3
Floor 16	3756	75.1	12.4	54.4
Floor 15	3886	77.7	18.7	84.0
Floor 14	3991	79.8	6.0	52.3
Floor 13	4096	81.9	6.0	52.3
Floor 12	4201	84.0	6.0	52.3
Floor 11	4307	86.1	6.0	52.3
Floor 10	4415	88.3	6.0	52.3
Floor 9	4521	90.4	6.0	52.3
Floor 8	4628	92.6	6.0	52.3
Floor 7	4340	86.8	NC	317.7
Floor 6	4352	87.0	338.5	No info
Floor 5	6615	132.3	NC	NC
Floor 4	6796	135.9	86.5	NC
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Guy Nordenson and Associates

Table 4.18 Column 74 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	119	2.4	71.1	143.2
Floor 47	190	3.8	73.3	178.4
Floor 46	259	5.2	75.4	165.5
Floor 45	329	6.6	73.3	165.5
Floor 44	395	7.9	73.3	165.5
Floor 43	397	-	-	-
Floor 42	475	9.5	73.3	165.5
Floor 41	477	-	-	-
Floor 40	562	11.2	73.3	165.5
Floor 39	634	12.7	73.3	165.5
Floor 38	706	14.1	73.3	165.5
Floor 37	779	15.6	73.3	165.5
Floor 36	853	17.1	73.3	165.5
Floor 35	927	18.5	73.3	165.5
Floor 34	1001	20.0	73.3	165.5
Floor 33	1076	21.5	73.3	165.5
Floor 32	1151	23.0	73.3	165.5
Floor 31	1227	24.5	73.3	165.5
Floor 30	1303	26.1	73.3	165.5
Floor 29	1379	27.6	73.3	165.5
Floor 28	1455	29.1	73.3	165.5
Floor 27	1535	30.7	73.3	165.5
Floor 26	1615	32.3	73.3	165.5
Floor 25	1695	33.9	73.3	165.5
Floor 24	1768	35.4	75.4	178.4
Floor 23	1874	37.5	161.0	272.6
Floor 22	1936	38.7	73.3	165.5
Floor 21	1998	40.0	73.3	165.5
Floor 20	2051	41.0	73.3	143.2
Floor 19	2103	42.1	73.3	143.2
Floor 18	2153	43.1	73.3	143.2
Floor 17	2202	44.0	73.3	143.2
Floor 16	2256	45.1	75.0	169.8
Floor 15	2317	46.3	75.6	178.4
Floor 14	2359	47.2	69.0	143.2
Floor 13	2401	48.0	69.0	143.2
Floor 12	2443	48.9	69.0	143.2
Floor 11	2485	49.7	69.0	143.2
Floor 10	2532	50.6	69.0	143.2
Floor 9	2579	51.6	69.0	143.2
Floor 8	2626	52.5	69.0	143.2
Floor 7	2605	52.1	NC	98.5
Floor 6	2649	53.0	224.9	8.1
Floor 5	4612	92.2	NC	NC
Floor 4	4644	92.9	207.6	11.2
Floor 3	5171	103.4	NC	11.2
Floor 2	5211	104.2	321.5	8.1

Guy Nordenson and Associates

Table 4.19 Column 75 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	58	1.2	6.0	138.9
Floor 47	105	2.1	6.0	No info
Floor 46	207	4.1	6.0	275.3
Floor 45	279	5.6	6.0	156.1
Floor 44	350	7.0	6.0	156.1
Floor 43	351	-	-	-
Floor 42	432	8.6	6.0	156.1
Floor 41	433	-	-	-
Floor 40	520	10.4	6.0	156.1
Floor 39	593	11.9	6.0	156.1
Floor 38	666	13.3	6.0	156.1
Floor 37	739	14.8	6.0	156.1
Floor 36	813	16.3	6.0	156.1
Floor 35	888	17.8	6.0	156.1
Floor 34	963	19.3	6.0	156.1
Floor 33	1038	20.8	6.0	156.1
Floor 32	1113	22.3	6.0	156.1
Floor 31	1188	23.8	6.0	156.1
Floor 30	1264	25.3	6.0	156.1
Floor 29	1340	26.8	6.0	156.1
Floor 28	1417	28.3	6.0	156.1
Floor 27	1496	29.9	6.0	156.1
Floor 26	1576	31.5	6.0	156.1
Floor 25	1656	33.1	6.0	156.1
Floor 24	1739	34.8	6.0	156.1
Floor 23	1831	36.6	14.0	245.2
Floor 22	1922	38.4	6.0	156.1
Floor 21	2013	40.3	6.0	156.1
Floor 20	2089	41.8	6.0	156.1
Floor 19	2164	43.3	6.0	156.1
Floor 18	2233	44.7	6.0	156.1
Floor 17	2303	46.1	6.0	156.1
Floor 16	2372	47.4	6.0	156.1
Floor 15	2442	48.8	6.0	156.1
Floor 14	2512	50.2	6.0	156.1
Floor 13	2582	51.6	6.0	156.1
Floor 12	2652	53.0	6.0	156.1
Floor 11	2722	54.4	6.0	156.1
Floor 10	2799	56.0	6.0	156.1
Floor 9	2876	57.5	6.0	156.1
Floor 8	2952	59.0	6.0	156.1
Floor 7	2831	56.6	NC	261.4
Floor 6	2952	59.0	121.1	NC
Floor 5	2594	51.9	NC	NC
Floor 4	2470	49.4	121.1	NC
Floor 3	3363	67.3	NC	NC
Floor 2	3769	75.4	200.4	NC

Table 4.20 Column 76 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	214	4.3	104.7	204.9
Floor 47	305	6.1	75.2	175.5
Floor 46	495	9.9	135.0	371.7
Floor 45	633	12.7	6.0	116.2
Floor 44	772	15.4	6.0	116.2
Floor 43	774	-	-	-
Floor 42	914	18.3	6.0	116.2
Floor 41	916	-	-	-
Floor 40	1057	21.1	6.0	116.2
Floor 39	1197	23.9	6.0	116.2
Floor 38	1338	26.8	6.0	116.2
Floor 37	1479	29.6	6.0	116.4
Floor 36	1620	32.4	6.0	116.4
Floor 35	1762	35.2	6.0	116.2
Floor 34	1904	38.1	6.0	116.2
Floor 33	2046	40.9	6.0	116.2
Floor 32	2189	43.8	6.0	116.2
Floor 31	2331	46.6	6.0	116.2
Floor 30	2475	49.5	6.0	116.2
Floor 29	2618	52.4	6.0	116.2
Floor 28	2762	55.2	6.0	116.2
Floor 27	2906	58.1	6.0	116.2
Floor 26	3051	61.0	6.0	116.2
Floor 25	3196	63.9	6.0	116.2
Floor 24	3342	66.8	71.1	53.2
Floor 23	3523	70.5	92.1	53.2
Floor 22	3704	74.1	92.1	53.2
Floor 21	3886	77.7	92.1	53.2
Floor 20	4033	80.7	92.1	53.2
Floor 19	4179	83.6	92.1	53.2
Floor 18	4330	86.6	92.1	53.2
Floor 17	4481	89.6	92.1	53.2
Floor 16	4632	92.6	92.1	53.2
Floor 15	4784	95.7	92.1	59.0
Floor 14	4938	98.8	92.1	59.0
Floor 13	5091	101.8	92.1	59.0
Floor 12	5246	104.9	92.1	59.0
Floor 11	5400	108.0	92.1	59.0
Floor 10	5551	111.0	92.1	59.0
Floor 9	5707	114.1	92.1	59.0
Floor 8	5865	117.3	92.1	59.0
Floor 7	-	-	-	-
Floor 6	-	-	-	-
Floor 5	-	-	-	-
Floor 4	-	-	-	-
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Guy Nordenson and Associates

Table 4.21 Column 77 Lateral Bracing Code Check (no code violations)

| Floor |
| :--- | :---: | :---: | :---: | :---: |
| Level | | Design Compression |
| :---: |
| Load in Column |
| [Kip] | | Required 2\% Bracing |
| :---: |
| Force |
| [Kip] |\quad| Total Bracing Capacity Provided
 to the Column | |
| :---: | :---: |

Table 4.22 Column 78 Lateral Bracing Code Check (no code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	59	1.2	69.0	138.9
Floor 47	114	2.3	69.0	165.5
Floor 46	183	3.7	71.1	218.6
Floor 45	265	5.3	69.0	143.2
Floor 44	347	6.9	69.0	143.2
Floor 43	348	-	-	-
Floor 42	431	8.6	69.0	No info
Floor 41	433	-	-	-
Floor 40	516	10.3	69.0	No info
Floor 39	598	12.0	69.0	No info
Floor 38	681	13.6	69.0	No info
Floor 37	763	15.3	69.0	143.2
Floor 36	847	16.9	69.0	143.2
Floor 35	930	18.6	69.0	143.2
Floor 34	1015	20.3	69.0	143.2
Floor 33	1099	22.0	69.0	143.2
Floor 32	1184	23.7	69.0	143.2
Floor 31	1269	25.4	69.0	143.2
Floor 30	1355	27.1	69.0	143.2
Floor 29	1440	28.8	69.0	143.2
Floor 28	1526	30.5	69.0	143.2
Floor 27	1612	32.2	69.0	143.2
Floor 26	1699	34.0	69.0	143.2
Floor 25	1785	35.7	69.0	143.2
Floor 24	1874	37.5	69.0	178.4
Floor 23	1980	39.6	69.0	178.4
Floor 22	2086	41.7	69.0	178.4
Floor 21	2193	43.9	69.0	178.4
Floor 20	2281	45.6	69.0	178.4
Floor 19	2370	47.4	69.0	178.4
Floor 18	2457	49.1	69.0	178.4
Floor 17	2545	50.9	69.0	178.4
Floor 16	2632	52.6	69.0	178.4
Floor 15	2720	54.4	69.0	178.4
Floor 14	2808	56.2	69.0	178.4
Floor 13	2897	57.9	69.0	178.4
Floor 12	2985	59.7	69.0	178.4
Floor 11	3073	61.5	69.0	178.4
Floor 10	3164	63.3	69.0	178.4
Floor 9	3254	65.1	69.0	178.4
Floor 8	3345	66.9	69.0	178.4
Floor 7	-	-	-	-
Floor 6	-	-	-	-
Floor 5	-	-	-	-
Floor 4	-	-	-	-
Floor 3	-	-	-	-
Floor 2	-	-	-	-

Guy Nordenson and Associates

Table 4.23 Column 79 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	342	6.8	159.9	33.3
Floor 47	524	10.5	52.3	29.6
Floor 46	703	14.1	52.3	11.7
Floor 45	885	17.7	52.3	11.7
Floor 44	1084	21.7	52.3	11.7
Floor 43	1087	-	-	-
Floor 42	1288	25.8	52.3	11.7
Floor 41	1291	-	-	-
Floor 40	1476	29.5	52.3	11.7
Floor 39	1659	33.2	52.3	11.7
Floor 38	1844	36.9	52.3	11.7
Floor 37	2028	40.6	52.3	11.7
Floor 36	2213	44.3	52.3	11.7
Floor 35	2398	48.0	52.3	11.7
Floor 34	2584	51.7	52.3	11.7
Floor 33	2769	55.4	52.3	11.7
Floor 32	2956	59.1	52.3	11.7
Floor 31	3142	62.8	52.3	11.7
Floor 30	3329	66.6	52.3	11.7
Floor 29	3516	70.3	52.3	11.7
Floor 28	3704	74.1	52.3	11.7
Floor 27	3891	77.8	52.3	11.7
Floor 26	4080	81.6	52.3	11.7
Floor 25	4269	85.4	52.3	11.7
Floor 24	4459	89.2	52.3	11.7
Floor 23	4696	93.9	52.3	11.7
Floor 22	4935	98.7	52.3	11.7
Floor 21	5175	103.5	52.3	11.7
Floor 20	5366	107.3	52.3	11.7
Floor 19	5558	111.2	52.3	11.7
Floor 18	5750	115.0	52.3	11.7
Floor 17	5943	118.9	52.3	11.7
Floor 16	6138	122.8	52.3	11.7
Floor 15	6333	126.7	52.3	11.7
Floor 14	6528	130.6	52.3	11.7
Floor 13	6723	134.5	52.3	11.7
Floor 12	6918	138.4	52.3	11.7
Floor 11	7114	142.3	52.3	11.7
Floor 10	7310	146.2	52.3	11.7
Floor 9	7508	150.2	52.3	11.7
Floor 8	7706	154.1	52.3	11.7
Floor 7	7962	159.2	193.8	8.1
Floor 6	8103	162.1	117.4	6.9
Floor 5	8500	170.0	165.9	12.9
Floor 4	8797	175.9	303.2	8.6
Floor 3	9027	180.5	259.7	8.5
Floor 2	9220	184.4	No info	-

Table 4.24 Column 80 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	314	6.3	115.3	18.5
Floor 47	441	8.8	115.3	10.6
Floor 46	569	11.4	115.3	10.6
Floor 45	696	13.9	115.3	10.6
Floor 44	831	16.6	115.3	10.6
Floor 43	833	-	-	-
Floor 42	970	19.4	115.3	10.6
Floor 41	973	-	-	-
Floor 40	1102	22.0	115.3	10.6
Floor 39	1230	24.6	115.3	10.6
Floor 38	1359	27.2	115.3	10.6
Floor 37	1488	29.8	115.3	10.6
Floor 36	1618	32.4	115.3	10.6
Floor 35	1748	35.0	115.3	10.6
Floor 34	1878	37.6	115.3	10.6
Floor 33	2008	40.2	115.3	10.6
Floor 32	2139	42.8	115.3	10.6
Floor 31	2271	45.4	115.3	10.6
Floor 30	2402	48.0	115.3	10.6
Floor 29	2534	50.7	115.3	10.6
Floor 28	2666	53.3	115.3	10.6
Floor 27	2798	56.0	115.3	10.6
Floor 26	2931	58.6	115.3	10.6
Floor 25	3064	61.3	115.3	10.6
Floor 24	3198	64.0	115.3	10.6
Floor 23	3363	67.3	115.3	10.6
Floor 22	3529	70.6	115.3	10.6
Floor 21	3695	73.9	115.3	10.6
Floor 20	3828	76.6	115.3	10.6
Floor 19	3960	79.2	115.3	10.6
Floor 18	4096	81.9	115.3	10.6
Floor 17	4231	84.6	115.3	10.6
Floor 16	4368	87.4	115.3	10.6
Floor 15	4505	90.1	115.3	10.6
Floor 14	4642	92.8	115.3	10.6
Floor 13	4780	95.6	115.3	10.6
Floor 12	4918	98.4	115.3	10.6
Floor 11	5057	101.1	115.3	10.6
Floor 10	5194	103.9	115.3	10.6
Floor 9	5334	106.7	115.3	42.0
Floor 8	5475	109.5	115.3	42.0
Floor 7	5775	115.5	180.6	12.1
Floor 6	5798	116.0	10.3	3.2
Floor 5	7964	159.3	274.2	NC
Floor 4	8168	163.4	NC	237.8
Floor 3	8368	167.4	187.7	6.4
Floor 2	8498	170.0	No info	-

Table 4.25 Column 81 Lateral Bracing Code Check (orange indicates code violations)

Floor Level	Design Compression Load in Column [Kip]	Required 2\% Bracing Force [Kip]	Total Bracing Capacity Provided to the Column	
			North-South Direction [Kip]	East-West Direction [Kip]
Roof	87	1.7	10.3	146.3
Floor 47	176	3.5	8.1	168.6
Floor 46	277	5.5	8.1	303.3
Floor 45	405	8.1	50.1	143.2
Floor 44	536	10.7	50.1	143.2
Floor 43	539	-	-	-
Floor 42	671	13.4	50.1	No info
Floor 41	673	-	-	-
Floor 40	802	16.0	50.1	No info
Floor 39	930	18.6	50.1	No info
Floor 38	1058	21.2	50.1	No info
Floor 37	1187	23.7	52.3	168.6
Floor 36	1316	26.3	52.3	168.6
Floor 35	1446	28.9	50.1	168.6
Floor 34	1576	31.5	50.1	168.6
Floor 33	1706	34.1	50.1	168.6
Floor 32	1837	36.7	50.1	168.6
Floor 31	1968	39.4	52.3	168.6
Floor 30	2099	42.0	52.3	168.6
Floor 29	2231	44.6	52.3	168.6
Floor 28	2363	47.3	52.3	168.6
Floor 27	2495	49.9	50.1	168.6
Floor 26	2628	52.6	50.1	168.6
Floor 25	2761	55.2	50.1	168.6
Floor 24	2895	57.9	50.1	168.6
Floor 23	3061	61.2	52.3	168.6
Floor 22	3228	64.6	52.3	168.6
Floor 21	3395	67.9	52.3	143.2
Floor 20	3530	70.6	52.3	143.2
Floor 19	3665	73.3	52.3	143.2
Floor 18	3799	76.0	52.3	143.2
Floor 17	3934	78.7	52.3	143.2
Floor 16	4069	81.4	52.3	143.2
Floor 15	4205	84.1	50.1	143.2
Floor 14	4341	86.8	50.1	143.2
Floor 13	4477	89.5	50.1	143.2
Floor 12	4613	92.3	50.1	143.2
Floor 11	4750	95.0	50.1	94.3
Floor 10	4888	97.8	50.1	94.3
Floor 9	5026	100.5	50.1	94.3
Floor 8	5164	103.3	50.1	94.3
Floor 7	5463	109.3	270.7	10.0
Floor 6	5475	109.5	173.0	115.0
Floor 5	6041	120.8	262.4	166.9
Floor 4	6056	-	-	-
Floor 3	6270	125.4	103.1	21.2
Floor 2	6351	127.0	No info	32.5

4.3 Summary of Structural Vulnerabilities

The following statements summarize the conclusions reached in the assessment of the structural vulnerabilities and lateral code bracing violations of WTC7:

- The WTC7 structure was required to comply with the 2% lateral bracing provision in Section C26-1001.2 of the Building Code of the City of New York.
- The girders framing into the interior columns were responsible for providing lateral bracing to the interior columns because the concrete slab was neither designed to provide nor capable of providing bearing resistance to the column.
- The axial capacity of the girders in tension and compression was dependent upon their connection details.
- The Engineer of Record did not provided the contractor's fabricator with the necessary axial design forces to comply with the 2% code requirement.
- The welded double-angle knife connections selected by the design team to connect over half the girders and beams to interior columns were weak in tension and not adequate as lateral bracing. Simple hand calculations using AISC allowable design procedures would have demonstrated that welded double-angle knife connections were not capable of being designed for the tensile loads required to brace from one side many of the heavily loaded columns in the WTC7 building including Column 79. Therefore these connections were an inappropriate choice to use as the lateral bracing for these columns.
- The combination of welded double-angle girder-to-column connections, which were weak in tension, with three-sided girder bracing at many interior columns resulted in numerous locations where the columns were insufficiently laterally supported.
- Approximately 46% of all floor-to-interior column joints in the building did not meet the 2% lateral bracing code requirement in at least one direction. Furthermore, 75% of the interior columns possessed at least one lateral bracing code violation.
- In addition to the widespread lateral bracing code violations, other characteristics made the building less robust and redundant and particularly vulnerable to disproportionate collapse including the use of multiple interdependent transfer structures, trench headers, and large tributary floor areas.
- The code violations and the other identified structural vulnerabilities caused the progression of global collapse on 11 September 2001 as explained in Section 5.0.

$5.0 \quad$ PROBABLE GLOBAL COLLAPSE MECHANISM

Although the precise details of the WTC7 collapse cannot be accurately simulated by a computer analysis, probable stages of the collapse can be identified using a combination of information gained from parametric structural computations and an analysis of the visual evidence of the collapse.

While Section 4.0 evaluates the inherent vulnerability of the WTC7 structure, this section describes the way in which the building failed as a result of these vulnerabilities. The global collapse mechanism, which was initiated by the local failure of a single girder and resulted in the total collapse of the building, is described in six stages. By nature of the collapse event, the first several stages of the sequence are considered with a much higher level of analysis detail than the later stages. The final stages are considered more broadly because the behavior of the structure during these stages is highly dynamic and chaotic with many complex events occurring simultaneously.

This section of the report also demonstrates that a disproportionate building collapse would not have occurred on 11 September 2001 as a result of the local failure had these vulnerabilities not existed.

5.1 Summary of Visual Evidence of Collapse

Video footage exists of the WTC7's collapse; however, most of the footage shows only the north façade of the building, and all of it was taken at or near street level at a distance from the site. As a result, there is no available visual evidence of the behavior of the south facade of the building, the lower third of the building (due to obstructing surrounding buildings), or the roof of the building from a birds-eye view during the collapse. From the available footage of the north façade, however, several key indicators of the behavior of the building during the collapse are evident.

The first indicator is the fall of the East Penthouse structure. A vertical kink, which aligns approximately with Columns 79 and 80, forms in the penthouse. Subsequently, the two sides of the East Penthouse structure tip inwards towards the kink and disappear into the building below (Figure 5.1A). An approximate 5 second pause follows this event, during which time no significant activity is observed although light is evident through the east side of the building indicating that it has been partially hollowed-out (Figure 5.1 B). The pause is then succeeded by a rapid progression of collapse of the remaining penthouse structures to the west (Figure 5.1 C), followed immediately by the onset of global collapse of the perimeter structure. The collapse of the interior structure west of Column 76 precedes the collapse of the building's perimeter by approximately one story (Figure 5.1D). As the entire building falls, a horizontal "kink" is observed in the north façade of the building which is aligned approximately with Column 48 on the
perimeter (Figure 5.2). It is likely that this kink is an indication of the northward movement of the upper floors of the eastern region of the building. These visual indicators aid in the reconstruction of the probable global collapse sequence because they relate the results of the studies to tangible facts.

Figure 5.1 Views of North façade of WTC7 during collapse from available video footage (A) fall of East Penthouse (B) approx 5 second pause following East Penthouse fall (C) start of westward collapse of remainder of the interior of the building followed immediately by (D) collapse of entire structure

Figure 5.2 Still from available video footage showing horizontal "kink" in north face of building during collapse

5.2 Basis of Staged Deconstruction

Each stage in the global collapse sequence represents an approximate "snapshot" of the structure during the collapse. These snapshots are intended to identify moments in time when the structure was particularly susceptible to failure given its inherent vulnerabilities. Although the global collapse analysis has been separated into distinct events, visual evidence shows that some of the events occurred either simultaneously or in rapid succession. The sequence of these stages and the grouping of events in each stage is an effort to capture the likely progression of collapse and to illustrate causal effects of earlier stages of collapse. It should not be misinterpreted as a representation of the exact sequence of events or an implication of the timing of the events.

5.3 Summary of Probable Global Collapse Mechanism

Based on both the results of the structural studies and observation of the visual evidence of the collapse, a probable global collapse sequence was established. The sequence, illustrated in Figures 5.3 to 5.8, may be summarized in six stages. Because two possible initiating local collapse events were identified in the report by Dr Colin Bailey (Ref 7), the probable global collapse sequence includes two versions of Stages 1 and 2 (labeled Scenario A or Scenario B) in Table 5.1:

Table 5.1 Summary of probable global collapse sequence

STAGE	INTERIOR EVENT	EXTERIOR EVENT
Initiating Failure	Based on the results of the structural fire studies documented in the Bailey report, the triggering event is either the unseating of Girder 44-79 at its connection to Column 79 at Floor 13 (Scenario A) or at Floor 10 (Scenario B). A failure on Floor 13 corresponds to a failure during the cooling phase of the fire and a failure on Floor 10 corresponds to a failure during the heating phase. In both cases it is found that the two other connections to Column 79 remain intact immediately following the unseating of the girder.	No event

Table 5.1 cont Summary of probable global collapse sequence

STAGE	INTERIOR EVENT	EXTERIOR EVENT
2A (Fig 5.4)	Scenario A: The floor collapse leaves a void to the north and east of Column 79. As a result, the western knife connections between the column and Girder 76- 79, which provide insufficient lateral bracing to Column 79, fracture and trigger the buckling of the column below Floor 14. All floor areas tributary to Column 79 begin to collapse.	No event
2B (similar to Fig 5.4)	Scenario B: For the same reasons described in Stage 2A above, the floor collapse from Floor 10 to the ground triggers the buckling of Column 79 below Floor 11. All floor areas tributary to Column 79 begin to collapse.	No event
3 (Fig 5.5)	The onset of buckling at Column 79 and the failure of its tributary floor areas creates a void to the north and east of Column 80 and causes it to buckle approximately between Floors 7-20 as its inadequate western knife connections fracture. The floor areas supported by both Columns 79 and 80 (including the East Penthouse) break off at trench headers and fall to the ground as these columns lose the ability to carry load. It takes approximately 5 seconds for the upper- most floor areas supported by Columns 79 and 80 to reach the elevation of Transfer Trusses 1 and 2 at Floor 7. During this period, the eastern portions of these trusses may have been impacted by portions of the falling floor slabs, causing increasingly significant damage to the trusses.	

Table 5.1 cont Summary of probable global collapse sequence

STAGE	INTERIOR EVENT	EXTERIOR EVENT
$\begin{aligned} & 4 \\ & \text { (Fig 5.6) } \end{aligned}$	The eastern-most diagonals and supports of Transfer Trusses 1 and 2 are the most exposed to impact from the falling floor slabs and sustain sufficient damage to fail, which results in the total failure of the trusses (see Exterior Events for more detail). Columns 76, 77 and 78, which are supported on the failed transfer trusses, and their floor slabs begin to collapse.	Following failure of the eastern diagonal of Transfer Truss 1, tension force increases considerably in Girder 73-76 and its connection to Column 73 at Floor 7 fails. The failure results in loss of back-span support for two cantilevered transfer girders framing into it which support perimeter Columns 47 and 48. As a consequence, the transfer girders rotate, shedding load to perimeter Columns 46 and 49 and deforming the perimeter belt trusses. Column 46 and its adjacent perimeter framing including Columns 44 and 45 buckle over the lower floors due to the increased load and the loss of lateral support from the interior floors. The northern columns on the eastern perimeter then begin to buckle in a similar manner.
$\begin{aligned} & 5 \\ & \text { (Fig 5.7) } \end{aligned}$	The falling floor areas tributary to Columns 76-78 impose an eastern horizontal force on the remaining intact floors to the west. The intact floors are susceptible to rupture due to their pre-segmentation by the trench headers and core openings, and the horizontal forces cause them to break apart in the horizontal plane at the boundaries of the trench headers. The resulting lateral displacements of the slab segments cause Columns 64-75 to lose stability above Floor 7. Simultaneously Column 81 buckles due to fracture of its east connections following the loss of the floor areas tributary to Column 78.	As the northeast corner of the perimeter frame buckles over its lower floors, the upper region of the frame sways northward creating a horizontal "kink" visible on the north façade of the building. The perimeter frame buckling at the base of the building spreads to the south and west as the weight of the perimeter walls shifts to adjacent stable supports, overloads them and causes them to fail in rapid succession.

Table 5.1 cont Summary of probable global collapse sequence

STAGE	INTERIOR EVENT	EXTERIOR EVENT
6	As Columns 64 through 75 and their (ributary floor areas fall, the transfer girders at Floor 7 supporting the north façade fail.	The rapid western spread of perimeter buckling at the base of the building continues on both its north and south sides. The loss of the transfer girders exacerbates the failures on the north perimeter. Ultimately the spread of perimeter buckling reaches the western side of the building and fails the remaining structure.

JA-3974

PROBABLE GLOBAL COLLAPSE SEQUENCE
STAGE 1 (SCENARIO A)
INTERIOR EVENTS - Following the unseating of
Girder 44-79 at Floor 13, the floor framing and
floor slabs supported by the girder break off
(in some cases along trench headers) and fall,
impacting the floor below and leading to its failure
and the progressive failure of the northeast slabs
on all lower floor levels to the ground. The corner
slabs on these levels likely remain in place but
with considerable damage.
EXTERIOR EVENTS - No Event
NOTE - Deformations not to scale

Guy Nordenson and Associates
 Figure 5.3 Stage 1 Scenario A Collapse Diagrams WTC7 Global Collapse Analysis

Figure 5.4 Stage 2 Scenario A Collapse Diagrams
(8)

WTC7 Global Collapse Analysis
Report and Summary of Findings
12 February 2010
PROBABLE GLOBAL COLLAPSE SEQUENCE
STAGE 3
INTERIOR EVENTS－The onset of buckling at
Column 79 and the failure of its tributary floor
areas creates a void to the north and east of
Column 80 and causes it to buckle approximately
between Floors $7-20$ as its inadequate western
knife connections fracture．The floor areas
supported by both Columns 79 and 80 （including
the East Penthouse）break off at trench headers
and fall to the ground as these columns lose the
ability to carry load．It takes approximately 5
seconds for the upper－most floor areas supported
by Columns 79 and 80 to reach the elevation of
Transfer Trusses 1 and 2 at Floor 7 ．During this
period，the eastern portions of these trusses may
have been impacted by portions of the falling floor
slabs，causing increasingly significant damage to
the trusses．
EXTERIOR EVENTS－No Event
NOTE－Deformations not to scale
 Approximate Timing：During East Penthouse
collapse and approximate 5－second pause
Page 74

												V								V	
（3）												N								，	
（1）												\cdots								V	
（\％）												，								，	
（9）												\cdots								\cdots	
(9)												，								＋	
(9)												\bigcirc								－	
（3）												，								＂4	
												\cdots								－	
든（e）												，								\cdots	
发（2）												\bigcirc								－	
宸듸（6）												\bigcirc								\cdots	
㦯家												，								，	
x ${ }^{\text {¢ }}$												，								\bigcirc	
氟产（6）												\cdots								\cdots	－

Guy Nordenson and Associates

[^2]
 NOTE - Deformations not to scale and buckled shape of perimeter frame not shown for clarity.

LEGEND $\begin{array}{ll}\square & \text { Structural Failure } \\ \square & \text { Exterior Frame Unbraced } \\ \square & \text { Region Structure Removed } \\ \square & \text { Trench Header }\end{array}$
 Approximate Timing: At onset of collapse of

WTC7 Global Collapse Analysis
Report and Summary of Findings
12 February 2010
Guy Nordenson and Associates
PROBABLE GLOBAL COLLAPSE SEQUENCE
STAGE 5
INTERIOR EVENTS - The falling floor areas tributary
to Columns $76-78$ inpose an eastern horizontal
force on the remaining intact floors to the west.
The intact floors are susceptitle to rupture due to
corr openengs, and the horizontal forces cause
chem to break apart in the horizontal plane at the
them to break apart in the horizontal plane at
boundaries of the trench headers. The result ting
lateral displacements of the slab segments cause
lateral displacements of the slab segments cause
Coluns $64-75$ to lose stability above floor 7 .
Simultaneously Column 81 buckles due to fracture of its east connections following the loss of the
floor areas tributary to Column 78 .
EXTERIOR EVENTS - As the northeast corner of
the perimeter frame buckles overe its cower floors,
the upper region of the frame sways northward
creating a horizontal "kink" visible on the north
façade of the building. The perimeter frame bucking at the base of the building spreads to
the south and west as the weight of the perimeter
 NOTE - Deformations not to scale and buckled
shape of perimeter frame not shown for clarity.

Guy Nordenson and Associates
PROBABLE GLOBAL COLLAPSE SEQUENCE
STAGE 6
INTERIOR EVENTS - As Columns 64 through 75 and
their tributary floor areas fall, the transfer girders
at Floor 7 supporting the north façade fail.
EXTERIOR EVENTS - The rapid western spread of
perimeter buckling at the base of the building
continues on both its north and south sides. The
loss of the transfer girders exacerbates the failures
on the north perimeter. Ultimately the spread of
perimeter buckling reaches the westerm side of the
building and fails the remaining structure.
NOTE - Deformations not to scale and buckled
shape of perimeter frame not shown for clarity.

WTC7 Global Collapse Analysis
Report and Summary of Findings
12 February 2010

Stage 1 consists of the progressive collapse of the floor structure in the northeast corner of the building from either Floor 13 or Floor 10 to the ground following the unseating of Girder 44-79 to Column 79 at either Floor 13 (Scenario A, Figure 5.3) or 10 (Scenario B).

Using the calculation methodology outlined in Section 5.4.1 and explained in detail in Appendix B, it was determined that the unseating of Girder 44-79 to Column 79 at Floor 13 results in an impact force on Floor 12 large enough to fail its seated connection to Column 79 in shear. The failed girder on Floor 12 then pulls down its tributary floor structure, impacting and failing the floor below it in a similar manner. This behavior propagates to the ground because no floor is capable of arresting it, including Floors 5 and 7, which are thicker and more heavily reinforced than the other floors. The floor failures are aided by the presence of trench headers in the slabs which allow them to break off with limited energy dissipation or transfer of load to adjacent structure.

A detailed floor slab collapse analysis was carried out for Scenario A (ie an initiating event on Floor 13) only. Although no analysis was performed for Scenario B (ie an initiating event on Floor 10), the similarities between Floors 13 and 10 and the conservative decision to disregard energy accumulation in the analysis allow the results and conclusions of the analysis to apply to Scenario B.

The analysis determined the failure of Girder 44-79 at Floor 13, or at a lower floor in the building, led to localized floor collapse on all subsequent lower levels to the ground, which constitutes unacceptable performance from a disproportionate collapse prevention standpoint.

5.4.1 Scenario A Floor Collapse Analysis

The full details and calculations of the Floor Collapse Analysis are contained in Appendix B. This section provides an overview of the methodology and conclusions of the analysis for Scenario A, a local girder failure at Floor 13.

Upon failure of Girder 44-79's connection to Column 79 on Floor 13, the southern end of the girder would unseat, rotate and fall toward Floor 12. Using principles of energy conservation, it was determined that the energy of impact of the falling floor slab on Floor 12 would be sufficient to fail this floor and would cause the propagation of floor collapse to the floor below. Using the same methodology, it was determined that it would not be possible to arrest the propagation of floor collapse on subsequent lower levels, including Floors 5 and 7 which were thicker and more highly reinforced.

The basis for the analysis was an energy comparison between the remaining potential energy of a floor slab once it has deformed and broken away from its surrounding slab versus the energy required to fail the support structure of the floor below as follows:

$$
\left(\binom{\text { Potential Energy of }}{\text { Falling Floor }}-\binom{\text { Energy Dissipated }}{\text { in Failure of Floor }}\right) \text { Vs }\left(\begin{array}{l}
\text { Energy Required to Fail } \\
\text { Girder Connection to } \\
\text { Column at Floor Below }
\end{array}\right)
$$

A conservative approach to the analysis was taken in which the energy comparison was made on a relative floor-to-floor basis without allowing the potential energy of falling floors to accumulate. For example, once it was determined that Floor 12 would fail as a result of the impact of Floor 13, both the remaining potential energy of Floor 13 and its new potential energy due to its mass falling from Floor 12 to 11 were set to zero. Only the new potential energy of Floor 12 falling to Floor 11 was included in the next energy comparison at Floor 11 to assess whether the collapse would propagate further (Figure 5.9).
STEP 1:

STEP 3: $\left.\left(\begin{array}{l}\text { Potential Energy of } \\ \text { Floor } 11 \text { Falling to } \\ \text { Floor } 10\end{array}\right)-\left(\begin{array}{l}\text { Energy Dissipated } \\ \text { in Failure of } \\ \text { Floor 11 }\end{array}\right)\right)>\left(\begin{array}{l}\text { Energy Required to } \\ \text { Fail Floor 10 Girder } \\ \text { Connection to Column }\end{array}\right) \rightarrow \begin{aligned} & \text { Floor Collapse } \\ & \text { Propagates }\end{aligned}$

ETC, TO GROUND

Figure 5.9 Conservative methodology for floor collapse assessment

While the study requires assumptions about geometry and deformation characteristics of the failing floor system, a conservative approach was taken to establish a lowerbound potential energy and an upper-bound deformation energy, thereby producing the lowest possible shear force transferred to the girder-to-column connection at each level.

As the basis for determining both the potential energy of the falling floor slab and the amount of energy dissipated in its failure, a structural analysis model in SAP2000 was generated to assess the probable geometry of each floor as it collapsed due to the failure of Girder 44-79 at Column 79. As the girder was unseated, it would have pulled down the floor beams and floor slab it supported. The roughly square floor slab area would have attempted to distort into a hyperbolic paraboloid-like shape as it fell because it remained supported on two sides while losing support on its other two sides due to fracture of the floor slab (Figure 5.10).

The potential energy of each falling floor was calculated as the mass of the floor tributary to the impact point under the deformed geometry condition multiplied by the height over which that mass would fall before impacting the floor below (Figure 5.11).

Figure 5.10 Deformed geometry of floor during collapse

Figure 5.11 Basis for potential energy calculation at each floor level

The energy dissipated when the floor fell was the energy required to fracture the slab's continuity with the adjacent slab and to inelastically hinge the slab along yield lines to allow it to deform. These energies were calculated as either the fracture energy associated with rupture of the concrete and steel in the floor slab or the plastic energy
from moment-rotation curves for the floor slab. The sources of energy dissipation are as follows (illustrated in Figure 5.12):

- Tensile fracture of highly deformed bays directly to the south and west of the falling floor slab area
- Shear and tensile fracture of the floor sections framing into the south and west sides of Column 79
- Plastic hinging of the perimeter of the falling floor slab
- Plastic hinging of the borders with the south and west deformed bays (only where full slab depth trench headers are not present)
- Energy dissipation based on the rotational deformation of the falling floor slab area along slab hinge lines
- Plastic deformation of falling girder end at impact with floor below

Figure 5.12 Assumed energy dissipation modes and locations (slab boundary rotations on southern boundary of floor failure only included where full-depth trench headers not present)

The deformed shape of the floor and the energy calculations account for the presence of a trench header on the southern boundary of the failed floor region. The presegmentation caused by the trench header reduced the energy dissipated by the detachment of the slab along this border.

Subtracting the total dissipated energy from the initial potential energy of the partial floor prior to collapse provided the potential energy of the floor at the moment of impact with Floor 12. Additional energy was dissipated by the inelastic deformation of the girder as its point of impact with Floor 12. The remaining potential energy was then converted to a static force based on the stiffness of the impact location and the resulting girder deflection. The resulting shear force transferred to the connection at Column 79 was then calculated and compared with the expected shear capacity of the connection to determine whether the connection would fail and cause Floor 12 to collapse. This series of calculations was performed for each floor level between Floor 12 and the ground.

The results of the analysis are summarized in the tables in Appendix B. It is evident from the results that for each floor level the impact of only the mass of the floor directly above it is sufficient to fail it and propagate the collapse, even at Floors 5 and 7. In reality, the impact force would be even larger due to the accumulated mass of higher floor levels, making this assessment highly conservative.

5.5 Probable Collapse Sequence Stage 2 Analysis Details

In Stage 2 Column 79 buckles following the loss of its adjacent floor structure to the north and east including Girder 44-79, which framed into the northern flange of the column (Figure 5.4). In Scenario A, the column loses floor framing between Floor 13 and the ground. In Scenario B, floor structure is lost between Floor 10 and the ground. As a result of the floor loss, Column 79 becomes reliant on the girders framing into it from the south and west for lateral bracing over the height of the floor collapse.

Using the methodology outlined in Section 5.5.1 and Appendix C, it was determined that the loss of floor structure to the north and east of Column 79, either between Floor 13 and the ground or between Floor 10 and the ground, was sufficient to cause Column 79 to lose stability and buckle. In a well-designed building, a floor collapse adjacent to a column would not normally cause the column to buckle; however, the interior columns in WTC7 were vulnerable to lateral instability as a result of their improperly designed lateral bracing (see Section 4.2). Section 5.5.2 demonstrates that had Column 79 been provided with the code-required lateral bracing, it would not have buckled following the floor collapse.

As Column 79 buckles, it loses its ability to support vertical load, and the floor slabs and floor framing supported by it begin to fall, including the East Penthouse at the top of the building, as evidenced by the video footage of the collapse. On typical floor levels, the floor slabs break off to the west along two north-south running trench headers. The segmentation of the slab created by the trench headers likely allows the falling floor slabs to detach from the intact structure to the west with minimal transfer of load and
damage. On the southern boundary of the falling floor slabs, no trench headers are present, and the floor slab fails along an east-west line at Column 80, resulting in loss of floor framing to the north of Column 80 and Stage 3 of the collapse (see Section 5.6).

5.5.1 Column 79 Stability Analysis

The full details and calculations of the Interior Column Stability Analyses are contained in Appendix C. This section provides an overview of the analysis methodology that resulted in the conclusions drawn above.

All columns, including interior gravity columns such as Column 79, require lateral bracing at each floor level because they possess initial out-of-straightness due to the allowable fabrication and erection tolerances in the assembly of their components as well as eccentricities in loading. This crookedness imposes lateral forces on the floor levels when the columns are loaded axially (Figure 5.13). When a column has adequately stiff and strong lateral bracing, the secondary effects of the crookedness are negligible. However, if a column is not sufficiently braced, the effect of the crookedness may be amplified, leading to buckling (Ref 15).

Figure 5.13 Example of lateral forces resulting from an initial crookedness of a column (Ref 15)

Following the collapse of the northeast floors including the loss of the girders framing into the north flange of Column 79, the column becomes dependent on the remaining girders framing into it from the south and west for lateral bracing (Figure 5.14). This bracing configuration imposes tensile forces on the welded double-angle knife
connections which connect these two girders at most levels to the column. As explained in Section 4.2.3, the concrete floor diaphragm to the south and west is not capable of providing lateral support to the column.

Figure 5.14 Remaining bracing configuration for Column 79 following floor failure (red = welded double-angle knife connections which are weak in tension)

The column stability analysis described in this section and in Appendix C is a means of assessing, using the methodology described in Steel Structures by William McGuire (Ref 15), whether the remaining lateral support to Column 79 was sufficiently strong to brace it and to allow it to continue to support gravity loads as the adjacent floor framing was lost.

The stability studies for Column 79, nonlinear analyses performed in SAP2000, considered a single full-height column with the material and sectional properties of the as-built column (a W14x730 built up with side plates). In order to perform a stability analysis, an initial out-of-straightness must be applied to the column. AISC design column bracing specifications use a slope of 1:500 to establish minimum brace forces. The 1:500 is consistent with the alignment tolerances for members with field splices in the Code of Standard Practice for Steel Buildings and Bridges (see Figure C-7.7, Ref 3 and Ref 2).

In reality, the out-of-straightness of Column 79 may have been greater than its initial erection out-of-straightness as a result of building movements and deformations of the column induced by the northeast floor failure described in Stage 1 of the collapse sequence and the thermal effects on the floor framing of fire on numerous levels of the building. Therefore, the crookedness of 1:500 used in the stability studies, without consideration for additional possible deformations due to the fires and floor failures, is considered to be a reasonable, if not conservative, estimate of the likely crookedness on the actual column immediately before buckling.

Because the configuration of the column's crookedness immediately following the initiation of sequential floor collapse in Stage 1 cannot be known, the stability analyses considered all possible crookedness configurations within the established 1:500 slope limit. The demonstration that any one of these configurations caused instability of a column was sufficient to establish that the column buckled. Therefore, to reduce the number of analysis iterations, the most critical out-of-straightness within the established 1:500 erection tolerance limit was identified and only this case was run.

For Scenario A, the lateral bracing of the column from Floor 14 to the roof (ie where the floors were assumed to be intact) was conservatively assumed to have infinite strength and high stiffness. Between the ground level and Floor 13, where the floor slabs were assumed to have failed in Scenario A, the configuration and capacity of the lateral bracing was modeled by either a linear-elastic spring (labeled "LS" in Figures 5.16 and 5.17) or a nonlinear "Link" element (labeled "NLL" in Figures 5.17 and 5.18) with a defined axial-force/displacement relationship. Springs were assigned for header and seated type girder-to-column connections, on the basis that they had sufficiently high tension and compression capacities to brace the column. Nonlinear "Links" were defined for the welded double-angle knife girder-to-column connections. These links were assigned an unlimited compression capacity and a finite tension limit corresponding to their actual predicted tension capacity described below rather than their design capacity described in Section 4.2.5.

Although Section 4.2 demonstrates that the design tension capacity of the welded double-angle connection type, governed by flexural yielding of the angles per AISC, is insufficient to meet the code requirements for lateral bracing of Column 79, in reality, this type of connection has an even lower tension capacity. According to a detailed fracture analysis by Dr Anthony Ingraffea documented in Appendix A, a realistic estimation of the tension capacity of a typical welded double-angle connection, governed by fracture of the fillet welds, is approximately 0.85 kip/inch of connection depth, and possibly even lower.

The susceptibility of this type of connection to fracture under relatively low tension forces is a result of the stress concentrations created in the root of the fillet weld due to the combined tension and moment imposed on the fillet weld when the connection acts in tension (Figures 5.15 and 5.16). The tension capacity per unit depth determined by Dr Anthony Ingraffea was assigned to all nonlinear links representing knife connections in the Column 79 stability model because the details of these connections, including weld size and angle dimensions are similar throughout.

JA-3988

Figure 5.15 Combined tension and moment demands on fillet welds of knife connection due to tensile force

Figure 5.16 Stress concentration at root of fillet weld due to tension force on knife connection (image from report by Dr Anthony Ingraffea, Appendix A)

In the Scenario A stability analysis for Column 79, the load applied to the column corresponded to the sustained gravity load ($1.0 \mathrm{D}+1.0 \mathrm{SDL}+0.25 \mathrm{~L}$) on the column from the undamaged global collapse model minus the loads lost from the floor collapse between Floor 13 and the ground.

The results of the Scenario A analysis, shown in Figure 5.17, illustrate that the western links representing the vulnerable double-angle knife connections framing into the western side plate of Column 79 reach their expected tension limit (ie fail) under sustained gravity loads. Once one link fails, the adjacent links above and below take more load and subsequently fail, causing an unzipping effect over the lower floors of the column. When a number of links have failed such that the minor axis of the column is unbraced over a sufficient height, the minor axis moments and deformations of the column increase exponentially, an indication of buckling. At a certain point, the combined effects of axial compression and bending moment on the column are sufficient to yield the column cross-section at its side plates. This point represents the buckling point and the end of the analysis because as soon as the side plates begin to yield and are unable to provide resistance to the bending forces inherent to buckling, the column loses stiffness. In other words, at the onset of yielding, a smaller section of the column must resist the same bending forces. This phenomenon results in the rapid deterioration of the stability of the column, or inelastic buckling (Ref 18). The nonlinear analysis does not account for the effect of residual stresses in the column which would only lead to an earlier onset of inelastic buckling.

In addition to the nonlinear analysis described above, a linear buckling analysis was also performed on the "unzipped" column to illustrate that the eigenvalue corresponding to the first buckling mode (or "buckling factor" in SAP2000) is less than 1.0 (ie unable to support 100% of or 1.0 times the applied load) and to further substantiate that the column would buckle under the sustained loads following the northeast corner floor failures.

The analysis for Scenario B was identical to that described above for Scenario A, except that the Link elements and the reduced vertical loads were assigned from the ground level to Floor 10 rather than to Floor 13. The results of the analysis, shown in Figure 5.18, also demonstrate that a northeast floor collapse between Floor 10 and the ground would cause Column 79 to buckle.

[^3]

[^4]Guy Nordenson and Associates

As described in the subsequent stages of the collapse sequence, it is the buckling of Column 79 in Stage 2 that transforms the collapse from a failure confined to the northeast corner of the building to a widespread collapse. The buckling of Column 79 due to its non-code compliant lateral bracing sets in motion a sequence of collapse events including additional interior column buckling, the failure of two transfer trusses, and ultimately the failure of the entire building.

An additional stability analysis was conducted on Column 79 to demonstrate that had the column been provided with code-compliant lateral bracing, it would not have buckled following the loss of the lower floors in the northeast corner of the building. The analysis used the same methodology described in Section 5.5.1 and Appendix C with the following exceptions. Rather than applying sustained loads, the full design load on the column, accounting for live load reduction, was conservatively applied. Also, rather than using the actual weaker capacities of the lateral bracing, the links were increased to provide either 1% or 2% of the design loads in each column at each level depending upon the number of sides on which the column was assumed to be braced. Figure 5.19 presents the principal parameters of the analysis as well as the results. Only Scenario A was considered because a demonstration of structural stability for Scenario A (ie floor failure initiation at Floor 13) establishes structural stability of Scenario B (ie floor failure initiation at Floor 10).

From the figure it is evident that after the application of the full design load on the column, no links have failed and as a result, the bending moments in the column are very low. The displacement plot shows nearly linear response up to the full axial design load of 7962 kips at Floor 7. The maximum displacement at the full design load is 0.005 in. In comparison, for the inadequate knife connection actually used, the displacement from Figure 5.17 increased to over 20in under the full sustained load. Therefore, the analysis confirms that had Column 79 been designed with 2% lateral bracing as required by the Building Code of the City of New York, Column 79 would not have buckled, and the collapse would have been arrested following the loss of the northeastern floor slabs below Floor 14 (or Floor 11) and the ground (ie Stage 1).

Case 11－4403，Document 79－1，02／14／2012，525397，Page141 of 161
Guy Nordenson and Associates
Figure 5.19 Input and Output for Stability Analysis for Column 79 （Scenario A）with 2\％Bracing Capacity Illustrating Column Stability Under Sustained Gravity Loads

$$
\begin{aligned}
& \text { COLUMN DOES NOT BUCKLE }
\end{aligned}
$$

										－								，	－							，						（\％			． ．	
			\checkmark	y	59	\checkmark	$\mid\lrcorner \mid$	ע\|.	$\|y\| y \mid$	y y y	y	$y \text { y }$	צ\|y		\pm	5	y	y	sy y y	－ 5	5	5	\checkmark	د	ע	y 5	ע\|	צ\|y		立	2	$\frac{1}{2}$				．
										＇＇＇	＇														，	．					＇	$\cdot \cdot$				
		\checkmark	\checkmark	51	59	s	． 9		\triangle	$\triangle 3$	\square^{5}	40	59	4	5		\checkmark	5	5	5	5			5	\triangle	5	5	－	บ		\checkmark	$y s y$	\checkmark	s		
						$\stackrel{8}{*}$	－		飬豙		\mathfrak{b}_{0}^{0}		0		\％		合家	发	串	\％		\％	館	\％	$\stackrel{\square}{\text { 禺 }}$	（	\％	违		等等		动管或	或兑	$0^{\text {cose }}$	咢	
		舌	\％	\％		－		$\frac{0}{20}$			$\overbrace{}^{2}$			${ }^{\text {a }}$			边		年	管䦽		等筞	${ }^{\frac{1}{4}}$					$\overbrace{\text { ¢ }}^{\substack{\text { ¢ }}}$	\％	为			＋		䒜	
	$\begin{aligned} & \text { 誉 } \\ & \text { 睬 } \end{aligned}$		$\begin{aligned} & \frac{\tilde{x}}{\underline{x}} \\ & \frac{1}{3} \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \frac{1}{18} \\ \frac{1}{5} \end{array}$		$\begin{aligned} & \text { 受 } \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \overline{\bar{p}} \\ & \stackrel{y}{3} \end{aligned}$		$\begin{aligned} & \text { 臱 } \\ & \text { 旁 } \end{aligned}$	$\begin{aligned} & \neq \xi_{1} \\ & \frac{1}{3} \end{aligned}$				$\begin{aligned} & \text { 爰 } \\ & \frac{3}{3} \end{aligned}$		$\begin{aligned} & \text { 顭 } \\ & \stackrel{y}{3} \end{aligned}$		$\frac{8}{3}$	$\begin{array}{\|l\|l} \hline 0 \\ \hline \\ \hline \end{array}$																
	\％	$\|\stackrel{\rightharpoonup}{2}\|$	佼			輷管													䢒		䇾笠	Mn	$\stackrel{\rightharpoonup}{\square}$	Cox		Cix	（1）		\mathfrak{y}	约	－	（1）			N	

WTC7 Global Collapse Analysis
Recoort and Summary of Findings
12 February 2010

Guy Nordenson and Associates

5.6 Probable Collapse Sequence Stage 3 Analysis Details

In Stage 3, Column 80 begins to buckle when the floors to its north and east start to fail as Column 79 buckles (Figure 5.5). Because Column 80, like Column 79, was already in a precarious state due to its insufficient lateral bracing (see Section 4.2), as soon as the floors supported by Column 79 begin to collapse, Column 80 loses stability. Consequently, the failure of Columns 79 and 80 and their tributary floors in Stages 2 and 3 occurs near-simultaneously, which is consistent with the formation of a vertical "kink" approximately along the lines of Column 79 and 80 in the video footage of the East Penthouse failure (Figure 5.1A). As Column 80 buckles, its tributary floor slabs, which are bounded almost entirely by trench headers, break off along the trench headers with minimal transfer of load to adjacent intact floors.
5.6.1 Column 80 Stability Analysis

A nonlinear stability analysis was carried out in SAP2000 for Column 80 using the same methodology and assumptions described in Section 5.5.1 for Column 79. Nonlinear link elements were assigned over the height of the column to the south and west to represent the weak welded double-angle knife connections which provide the only lateral bracing following the loss of floor framing over the height of the column to its north and east as Column 79 fails. A tension capacity of 0.85 kip per inch of depth determined by Dr Anthony Ingraffea in Appendix A was assigned to all nonlinear links representing knife connections in the Column 80 model because the details of these connections, including weld size and angle dimensions, are similar to the connection that he analyzed. Because Column 80 begins to buckle immediately after Column 79, the gravity loads assigned to the Column 80 model at each floor level correspond to the original sustained loads ($1.0 \mathrm{D}+1.0 \mathrm{SDL}+0.25 \mathrm{~L}$) on the column prior to the loss of the floor slabs supported by Column 79 to the north.

The results of the Column 80 stability analysis shown in Figure 5.20 are similar to those for Column 79. The western links representing the weak double-angle knife connections framing into the web plate of Column 80 begin to fail in tension under application of the sustained gravity loads. After a number of western links have failed between Floors 10 and 20, the minor axis deformations and moments in the column increase exponentially until the column cross-section begins to yield and the column is considered to have buckled. A linear buckling analysis was also performed on the same column with an unbraced length corresponding to the "unzipped" column height to illustrate that an eigenvalue (or "buckling factor" in SAP2000) less than 1.0 is produced for the sustained gravity loads on the column.
Guy Nordenson and Associates

Page 93
Bending Moment
(major axis) at Failure

Figure 5.20 Input and Output for Column 80 Stability Analysis Illustrating Column Buckling Under Sustained Gravity Loads
Bracing Conditions, Sectional Properties and Loading in the model (LS= Linear spring, NLL=Nonlinear link) Bracing conditions sketch before collapse

WTC7 Global Collapse Analysis
Report and Summary of Findings
12 February 2010

5.6.2 Stage 3 Collapse Prevention

Like for Column 79, a second stability analysis was conducted for Column 80 to demonstrate that had the column been provided with code-compliant lateral bracing, it would not have buckled following the loss of floors to its north and east as Column 79 buckled. The analysis used the same methodology and assumptions as the Column 79 analysis described in Section 5.5.2. Figure 5.21 presents the primary assumptions used in the analysis as well as the results. Similar behavior to the Column 79 is observed, indicating that the column would not have buckled had it been provided with the 2% lateral bracing required by the Building Code of the City of New York.
Guy Nordenson and Associates
Figure 5.21 Input and Output for Stability Analysis for Column 80 with 2\% Bracing Capacity Illustrating Column Stability Under Sustained Gravity Loads

WTC7 Global Collapse Analysis
Report and Summary of Findings
12 February 2010

5.7
 Probable Collapse Sequence Stage 4 Analysis Details

A first principles calculation determined that it takes approximately 5 seconds for the upper floor areas supported by Columns 79 and 80 to reach the elevation of Transfer Trusses 1 and 2 at Floor 7. During this period, it is likely that the eastern-most diagonals of Transfer Trusses 1 and 2, which were located beneath these failing floors, were impacted by portions of the floors as they fell to the ground. Either the damage from these impacts accumulated in the diagonals and eventually led to their failure, or a small number of significant blows caused the diagonals to fail. The actual failure mechanism of the diagonals and the time required to fail them cannot be speculated due to the highly random nature of the event but has no impact on the overall analysis. Nevertheless, the 5 second period of time it takes for the upper floors of the building in the failing region to reach the elevation of the trusses is consistent with the 5 second pause in the video footage of the collapse following the fall of the East Penthouse and prior to the collapse of the remainder of the building.

The loss of the eastern diagonals of Transfer Trusses 1 and 2 leads to their complete failure and the collapse of Columns 76, 77 and 78 which are supported by the trusses Figure 5.6). The failure of Transfer Truss 1 is considered in greater detail in this section than the failure of Transfer Truss 2 because the failure of Transfer Truss 1 has negative consequences on the perimeter of the building as a result of the interdependency of the transfer systems. However, in both cases, the loss of the eastern diagonal of each truss results in the total failure of the truss, in the manner described below for Transfer Truss 1.

Figure 5.22 Transfer Truss 1 (view towards south) before and after east diagonal failure

The loss of the east diagonal of Transfer Truss 1 results in a redistribution of load to the remaining truss members, including a large tension force in the western half of the top chord of the truss, a W36x210 girder between Columns 73 and 76 at Floor 7. The axial force on this member changes from 30 kips in compression to 439 kips in tension following the loss of the east diagonal of the truss (Figure 5.22). According to the available construction documents this girder is non-composite, meaning that the tensile force cannot be redistributed into the concrete slab. While the girder itself is capable of supporting this tensile force, its connection to Column 73 is a $46.5^{\prime \prime}$-deep welded double-angle knife connection with a maximum tensile strength of only 88 kips according to Dr Anthony Ingraffea's fracture analysis. The connection, therefore, fails under the increased load causing the girder to detach from Column 73. The loss of Girder 73-76 results in an unstable support condition for Column 76 on the remaining western diagonal of Transfer Truss 1. In this static analysis, the discounting of dynamic amplification effects due to the rapid failure of Transfer Truss 1 benefitted the performance of the structure.

Following the detachment of Girder 73-76 from Column 73, the two deep cantilevered transfer girders supporting Columns 47 and 48 on the north perimeter of the building begin to pivot about their lower supports (Columns 47A and 48A) due to the loss of the back-span support previously provided by the girder running between Columns 73 and 76 (Figure 5.23). The weight of the floor slabs framing into these girders and their continuity with the adjacent floor slabs to the west is not sufficient to prevent rotation of the girders.

Figure 5.23 Rotation of Transfer Girders at Columns 47 and 48 following failure of top chord of Transfer Truss 1

The loss of back-span support eliminates the ability of the girders to act as cantilevers to transfer load from Columns 47 and 48 to Columns 47A and 48A. As a result, the north perimeter structure, including the belt truss and moment frames, must bridge over the two rotated transfer girders at Columns 47 and 48, resulting in increased loads to the perimeter supports immediately to either side of these members (Figure 5.24) and increased moment and axial demands on the perimeter frame.

Figure 5.24 Bridging of north perimeter frame at Stage 4 between Columns 46 and 49 (failed transfer girders shown in red)

Figure 5.25 Detail from Frankel Steel erection drawing E119 showing discontinuity of perimeter belt truss members at connection to deep cantilevered girders (north elevation)

Additionally, because vertical and diagonal members of the perimeter belt truss system frame into the deep cantilevered transfer girders (Figure 5.25), the large rotations of these girders cause significant deformations in the belt truss system, including possible rupture of the connections to the transfer girders. In order to give benefit to the performance of the structure, this effect is not accounted for in the analysis.

The increase in load to the cantilevered girder supporting Column 49 to the west of the rotating girders is not large enough to fail either the adjacent transfer girder or Column 49/49A, which remains braced by interior floor slabs. However, the load shed to the perimeter structure frame to the east of the rotating girders has more severe consequences because Columns 44/44A, 45/45A and 46/46A are laterally unbraced about their minor axes as a result of the floor loss in the eastern region of the building. The axial load in Columns 44A, 45A and 46A increase by 8\%, 18\% and 52\% respectively and these increases are sufficient to cause them to buckle. A linear buckling analysis on the global model at this stage of the collapse produces an eigenvalue, or "buckling factor" of 0.96 (ie less than 1.0) for sustained loads on the structure, indicating buckling of these columns. The buckling mode shape shown in Figure 5.26 illustrates that these columns buckle over the lower third of the building.

Figure 5.26 Buckled shape of north perimeter frame at Stage 4 in global model (a) view towards west (b) partial view towards northeast

As Columns 44, 45 and 46 lose the ability to support load, the north exterior moment frame and belt trusses must bridge an even greater distance between Column 49 and Column 42 (Figure 5.27). This behavior is represented in the global collapse analysis by the removal of Columns 44, 45 and 46 and their associated perimeter framing over the lower three floors of the building. As shown in Figures 5.28 and 5.29 , the loss of

Columns 44, 45 and 46 places additional demands on the members of the moment frame and belt trusses and causes the axial load in Column 42 to increase by 57% while it loses minor axis lateral bracing from the buckling north façade frame.

Figure 5.27 Bridging of north perimeter frame at Stage 4 between Columns 42 and 49 (failed transfer girders and buckled perimeter columns shown in red)

Figure 5.28 Redistribution of North exterior frame axial loads in Stage 4 due to buckling of Columns 44, 45 and 46

Figure 5.29 Increase in North exterior frame bending moments in Stage 4 due to buckling of Columns 44, 45 and 46

A linear buckling analysis of the global model at this stage provides an eigenvalue, or buckling factor, for sustained loads on the eastern perimeter frame of 1.23. A factor in this range is sufficient to indicate the likelihood of buckling due to the conservative nature of linear buckling analyses in general which assume ideal geometry and ideal material properties as well as this analysis in particular which used a lower-bound estimate of the loads present on the frame. Figure 5.30 shows the buckled shape of the eastern perimeter structure over approximately the lower half of the building.

The buckling of the northeast corner of the perimeter frame is likely assisted by the presence of the remaining damaged floor slabs in this corner of the building. While these floor slabs are expected to be too damaged by the deformations and hinge lines explained in Section 5.4.1 to provide lateral bracing to the corner of the building, it is likely that they create an interaction or coupling between the north and east perimeter frames of the building such that an out-of-plane buckling of the north perimeter frame over the lower floors of the building introduces torsion on the remaining slabs and transfers the deformations to the east perimeter frame. This effect is illustrated by the deformed shaped of a study model shown in Figure 5.31.

Figure 5.30 Buckled shape (factor=1.23) of east perimeter frame at Stage 4 in global model (partial view towards northeast)

Figure 5.31 Buckled shape of a portion of a study model illustrating possible influence of corner floor slabs on the buckling behavior of the northeast corner of the perimeter frame

Guy Nordenson and Associates

5.7.1 Stage 4 Collapse Prevention

Additional load path redundancy in the design of Transfer Trusses 1 and 2 would have allowed them to continue to carry load following the loss of their eastern diagonals and potentially preventing the failure of Columns 76, 77 and 78 which were supported by them. This redundancy could have been provided within each individual truss through the use of double X -bracing rather than inverted V bracing as well as between the trusses in the form of an additional North-South oriented truss.

Furthermore, the use of welded double-angle knife connections, which have minimal axial strength and stiffness in tension, should have been avoided in the vicinity of the transfer trusses which characteristically place axial demands on the connections between their chord members and supports. Even prior to the loss of the eastern diagonal of Transfer Truss 1, the axial force in Girder 76-73 was 32 kips, indicating that axial force transfer through these connections was high enough to warrant consideration in their design. Furthermore, these vulnerable connections reduced the ability of the trusses to redistribute load following the loss of their eastern diagonals.

In addition, had the transfer girders not been supported by Transfer Truss 1, its loss would not have set in motion the series of failures along the exterior of the building. Avoiding interdependency of transfer structures reduces the likelihood of disproportionate collapse with minimal impact on the programmatic requirements of the building.

5.8 Probable Collapse Sequence Stage 5 Analysis Details

In Stage 5, simultaneous failures occur on both the interior and exterior of the building. Although the mechanisms responsible for the interior and exterior failures are independent, they occur simultaneously because they are both activated by the loss of the eastern floor slabs (Figure 5.7).

On the exterior of the building, the buckling of the northeastern perimeter of the building spreads to the south and west as load is redistributed. To represent the buckling of the northeast perimeter frame described in Stage 4, the lower three floors of Columns 35 to 42 and their associated perimeter framing were removed from the global model. A subsequent linear buckling analysis of the global model produced a SAP2000 "buckling factor" of 0.87 for the remaining gravity loads on the structure. The corresponding buckled shape in Figure 5.32 indicates that the remaining columns on the east perimeter of the building as well as Columns 24-27 on the south perimeter of the building have lost stability.

Figure 5.32 Buckled shape (factor=0.87) of east and south perimeter frame at Stage 5 in global model (partial view towards northwest)

The global model at this stage was also analyzed under the sustained gravity load case, and the resulting deformed shape is shown in Figures 5.33a and 5.34. These figures illustrate that the buckling of the lower northeastern corner of the perimeter frame in Stage 4 causes the unbraced eastern half of the building to sway northward. The deformed shape closely resembles the visual evidence of the "kink" in the north façade of the building immediately preceding total collapse of the building (Figure 5.33b).

Figure 5.33 (a) Deformed shape (not to scale) of global collapse model in Stage 5 following buckling of base of perimeter frame at the northeast corner (b) Comparison with deformed shape of building (ie horizontal "kink") just prior to total collapse

Figure 5.34 Deformed shape (plan, deformations not to scale) of global collapse model in Stage 5 following buckling of base of perimeter frame at the northeast corner

At the same time that the perimeter buckling spreads to the south and west, additional collapse events occur on the interior of the building. The large tributary floor areas of Columns 76, 77 and 78 which had been supported by the transfer trusses fall simultaneously towards the ground. While the floor failures in the earlier stages of collapse could be localized by the presence of the trench headers bounding the failing floor areas, the floor areas tributary to Columns 76, 77 and 78 have greater connectivity to the adjacent structure. Furthermore, the mass of the large tributary areas is greater. As the eastern supports of these areas fail, each floor level rotates about its remaining western support, creating a centripetal force that imposes tension on the rotating floor (Figure 5.35). The horizontal component of this tensile force in turn applies an eastward pull on each floor to the west (Figure 5.36). A report on the diaphragm rupture analysis in Appendix D provides additional details on the estimated magnitude of these loads.

Figure 5.35 Basis for horizontal loading on western floor slabs

Figure 5.36 Horizontal loading on intact floor slab as floor areas tributary to Columns 76, 77 and 78 begin to collapse (perimeter moment frame shown with dashed line)

The remaining western intact floor diaphragms are prone to rupture and instability from lateral loading due to the pre-segmentation by trench headers and core openings. The study detailed in Appendix D indicates that this vulnerability is the probable mode of failure of the remainder of the building.

It is probable that the horizontal force imposed by the collapsing structure on these floors fails the trench headers in tension, resulting in global instability and large displacements of portions of the diaphragm (Figure 5.37). As the western floor diaphragms begin to break apart at the trench headers and rotate horizontally, interior Columns 64 through 75, which are braced by these slabs, are compromised. These columns, which are already vulnerable to instability due to their numerous lateral bracing code violations, either break off from the rotating slabs and lose stability or remain connected to the rotating slabs and displace laterally. In either case, it is reasonable to conclude that these twelve columns buckle as a unit somewhere above Floor 7 where the interior core bracing stops and the columns are heavily loaded. This analysis is consistent with video footage showing the rapid fall of the visible roof structure supported by these columns immediately following the fall of the roof structure supported by Columns 76, 77 and 78 (Figure 5.1c and 5.1d).

Figure 5.37 Rupture of trench headers from lateral loading leading to instability of Regions A and B of the diaphragm (deformations not to scale, failed links hidden from view for clarity)

At the same time, the loss of the floor areas tributary to Columns 76, 77 and 78 leaves Column 81 reliant on the minor axis lateral bracing provided by the vulnerable welded double-angle knife connection to its east. A nonlinear stability analysis on Column 81 with this bracing configuration using the same assumptions as the analyses on Columns 79 and 80 demonstrates that the column buckles to the west at this stage in the collapse (Figure 5.38). A second nonlinear stability analysis also demonstrates that had this column been provided with the code-required 2% lateral bracing, it would not have failed (Figure 5.39).

5.8.1 Stage 5 Collapse Prevention

The manner in which the remaining intact floor areas rupture under lateral loads is a function of the discontinuities in the floor slabs created by the trench header ducts as well as the position of the lateral force-resisting systems in the building. The braced frames on the interior core stop at Floor 7. Above this level, the lateral force-resisting system consists only of a perimeter moment frame. As a result, the individual floor slab segments created by the trench headers and core openings are each only connected to the building's lateral system on their outside edge, and it is this asymmetry that leads to rupture under lateral loading. Had the braced frame at the core been extended through the entire height of the building, slab Regions A and B would have been braced symmetrically along both their north and south edges, and therefore would not have ruptured along the western trench headers. Additionally, had the discontinuities in the floor slabs created by the trench headers and core openings been addressed by the addition of horizontal bracing, the floor areas would not have ruptured in the manner they did.

[^5]Figure 5.38 Input and Output for Column 81 Stability Analysis Illustrating Column Buckling Under Sustained Gravity Loads

Guy Nordenson and Associates
Figure 5.39 Input and output for stability analysis for Column 81 with 2% bracing capacity illustrating column stability under sustained gravity loads

Probable Collapse Sequence Stage 6 Analysis Details
In the final stage of the global collapse sequence, both the remaining interior and exterior structure of the building fail (Figure 5.8). When Columns 64 through 75 buckle and their floor areas collapse, they compromise five additional transfer girders supporting the north perimeter frame of the building. As a result, the only remaining vertical support for the north face of the building is provided by Columns 55, 54, 57 and 1 . Similarly, on the south face of the building, the only vertical support is provided by Columns 15 to 23 . In both cases, the perimeter moment frames and belt trusses above the zones where the perimeter structure has failed effectively cantilever from these remaining western supports. This behavior induces high bending moments in the frames and large axial forces in the belt truss diagonals, particularly in the areas closest to the remaining supports where force transfer is greatest (Figure 5.40). Plastic hinging of the moment connections and buckling of the belt truss diagonals is likely in this zone, and this behavior is consistent with the video footage showing localized façade failure in the region of Columns 53-55 on the north façade (Figure 5.41).

Simultaneously, the remaining vertical supports become overloaded and buckle. This behavior is confirmed by a linear buckling analysis of the global model at this stage following the removal of buckled Columns 24-27 and the floor structure tributary to Columns 64 to 75 including five transfer girders supporting the north facade. Numerous buckling modes are found corresponding to the failure of the remaining northern and southern supports over the lower floors of the building (Figures 5.42 and 5.43), an indication of the consequent total collapse of the building.

The timing of the identified key events in the video footage indicates that the spread of exterior frame buckling from the east side of the building to the west described in Stages 4-6 occurs in a very short period of time. This rapid failure is consistent with the fact that the roof of the building remains virtually horizontal as it collapses (Figure $5.1 \mathrm{~d})$.

Figure 5.40 Bending moment diagram of north façade in Stage 6 indicating perimeter frame failures in the region of Column 55

Figure 5.41 Still from available video footage of final stage of collapse showing window breakage in the region of Columns 53-55 on the north elevation, possibly an indication of plastic hinging of the moment frame

Figure 5.42 Buckled shape of south perimeter frame in Stage 6 of the global Model (looking northeast)

Figure 5.43 Buckled shape of north perimeter frame in Stage 6 of the global Model (looking northeast)

SUMMARY OF FINDINGS

This section provides a summary of findings regarding the probable cause of the global collapse of the World Trade Center 7 office building on 11 September 2001 and the inherent vulnerabilities of the structure which made it susceptible to disproportionate collapse:

- The failure of a single girder due to fire effects at Column 79 resulted in the complete global collapse of the building.
- Debris damage had no influence on the global collapse of the building.
- The office contents fires present in the building at the time of the collapse, while having an influence on the initiating local collapse event, were not the cause of the global collapse of the building.
- Inadequate lateral bracing of the building's interior columns was the cause of the progression of global collapse. Had the interior columns been provided with the code-required lateral bracing, global collapse would not have occurred.
- According to the contract documents, the design team did not consider the 2% lateral bracing requirements of Section C26-100.2 of the Building Code of the City of New York in the design of the building.
- The welded double-angle knife connections that connected over half of the girders and beams to interior columns were inherently weak in tension and not adequate as lateral bracing. Simple hand calculations would have demonstrated that it was not possible to design an AISC-compliant welded double-angle knife connection for the tensile forces required to provide the 2% lateral bracing to the heavily-loaded columns in the WTC7 structure.
- Eighteen of the twenty-four interior columns and 46\% of the floor-to-interior column joints violated the lateral bracing requirements of the code.
- The actual tensile capacity of the welded double-angle knife connections was even weaker than the AISC code predicted due to their susceptibility to weld fracture.
- The use of multiple interdependent transfer structures contributed to the spread of disproportionate collapse. Had these transfer structures been made more redundant and had there been less interdependency of the transfer systems, it is probable that the global collapse would not have progressed west of Columns 79 and 80.

JA-4017

- Other characteristics of the building made it particularly susceptible to disproportionate collapse including the large tributary floor areas of interior columns and the trench headers subdividing the floor slabs. These characteristics explain the way in which the building failed.
- The probable global collapse sequence detailed in Section 5.0 is consistent with the visual evidence of the collapse on 11 September 2001.
- Although the global collapse occurred in the particular sequence outlined in Section 5.0, it is my opinion that disproportionate collapse could have resulted from an initiating failure at numerous other locations in the building as a result of the pervasive lateral bracing code violations in the building and the other vulnerabilities outlined in this report.
- The analyses performed to support the above conclusions were straightforward, transparent and conservative.

Guy Nordenson and Associates

7.0 REFERENCES

1 American Concrete Institute Committee 318, Building Code Requirements for Structural Concrete (ACl 318-05) and Commentary (ACl 318R-05), Second Printing, American Concrete Institute, Farmington Hills, MI, August 2005

2 American Institute of Steel Construction, Inc (AISC), Manual of Steel Construction, Eighth Edition, 1980

3 American Institute of Steel Construction Inc (AISC), Steel Construction Manual, Thirteenth Edition, 2005

4 American National Standard Institute (ANSI), Minimum Design Loads for Buildings and Other Structures, 1982

5 American Society of Civil Engineers (ASCE), Seismic Rehabilitation of Existing Building, ASCE Standard ASCE/SEI 41-06, 2007Anderson T, Fracture Mechanics: Fundamentals and Applications, $3^{\text {rd }}$ Edition, CRC

6 Anderson T, Fracture Mechanics: Fundamentals and Applications, $3^{\text {rd }}$ Edition, CRC
7 Bailey, Colin, Expert Report: Response of WTC7 to Standard Office Fires and Collapse Initiation, February 2010

8 Building Code of the City of New York, 1979-1980
9 Calixto J, "Comparative Study of Longitudinal Shear Design Criteria for Composite Slabs", Ibracon Structures and Materials Journal, June 2009

10 Cedolin L, Bisi G, Nardello P, Mode II Fracture Resistance of Concrete, Concrete Science and Engineering, Vol 1, March 1999, pp 37-44

11 ICC Evaluation Service Inc, ICC ES Legacy Report on HH Robertson Steel Floor Deck (ER-2739), 1996

12 Lam D and Qureshi J, "Prediction of Longitudinal Shear Resistance of Composite Slabs with Profile Sheeting to Eurocode 4", The Regency Steel Asia International Symposium on Innovations in Structural Steel (RSA-ISISS), 2008

13 Luttrell, Larry, Steel Deck Institute (SDI) Diaphragm Design Manual, Second Edition

Guy Nordenson and Associates

14 Mowrer, Fred, Expert Report in re: September 11 Property Damage and Business Loss Litigation, February 2010

15 McGuire, William, Steel Structures, Prentice-Hall International Series in Theoretical and Applied Mechanics, Structural Analysis and Design Series, 1968

16 Rogers C, Hancock G, Tensile Fracture Behaviour of Thin G550 Sheet Steels: Research Report No R773, University of Sydney Department of Civil Engineering, 1998

17 SAP2000 Nonlinear Version 12.0.2, Computers and Structures, Inc., Berkeley CA
18 Yura, Joseph, Five Useful Stability Concepts

APPENDIX A

WTC7 Knife Connection Report By Anthony Ingraffea PE PhD

WTC7 Knife Connection Study Report

Submitted to
Mark Antin Esq.
Gennett, Kallman, Antin and Robinson, P.C
6 Campus Drive
Parsippany, NJ 07054
by

A. R. Ingraffea, Ph.D., P.E.

November 30, 2009

1.0 INTRODUCTION

The purpose of this report is to investigate the capacity of a welded double-angle connection of the type shown in Figure 1, hereafter called a "knife" connection. This type of connection was used to connect many girders and beams to interior columns in the World Trade Center 7 building (WTC7) which collapsed on September 11, 2001. These connections were designed for transfer of vertical shear load, by longitudinal loading of the fillet welds; however, in supplying lateral restraint against buckling of columns, they would also have to transmit direct tension load, by transverse loading of these welds. The specific geometry of the connection shown in Figure 1 corresponds to the south knife connection to Column 79 at Floor 13 (according to Frankel Steel Limited Drawing No. 1091, Rev May 23 1985). This specific detail was used in numerous other locations in the building for connections to interior columns.

In Section 2, this report first describes the state-of-the-practice approach to calculating the capacity of this type of connection, based on AISC recommended practice. In Section 3, it presents a state-of-the-art, non-linear fracture mechanics approach to predicting the capacity of connections with low-eccentricity, transversely loaded welds. In Section 4, this approach is applied to a specific instance of the connection type shown in Figure 1b, a connection to Column 79 in the WTC7 building. A comparison between capacity predictions based on AISC recommended practice and the non-linear fracture mechanics approach is presented in Section 5.

Figure 1. (a) Schematic of typical beam-column knife connection. (b) Column 79 knife connection in WTC7, cross-section. (c) Column 79 knife connection in WTC7, perspective (dimensions based on Frankel Steel Limited Drawing No. 1091, Rev M ay 23 1985)

2.0 STATE-OF-THE-PRACTICE APPROACH

Figure 2 shows some typical welded details in which the weld is loaded transversely. In such configurations, the weld is situated at the tip of a crack-like root notch. K anvinde (2009) note that many previous studies have shown that "...transversely loaded fillet welds are 50% stronger than longitudinal welds..." and a simplified strength relationship based on weld metal ultimate strength, F_{u}, was "...adopted by CSA-S16 [17] in 1989 and was later presented in A ppendix J of A ISC [18], to be adopted in the main body of the specification in 2005, A ISC [12]."

$$
\begin{equation*}
\mathrm{P}_{\mathrm{u}}=1.5 \times 0.6 \times \mathrm{F}_{\mathrm{u}, \text { weld }} \times \mathrm{A}_{\text {throat }} \tag{1}
\end{equation*}
$$

where

$$
A_{\text {throat }}=L_{\text {weld }} \times \frac{1}{\sqrt{\left(1 / L_{\text {shear }}\right)^{2}+\left(1 / L_{\text {tension }}\right)^{2}}} .
$$

and "...the 1.5 factor reflects the 50% increase in strength for the transverse welds, while the 0.6 factor relates the axial strength to shear strength" according to the von M ises plasticity model.

Fig. 1. Transverse welds in (a) Lap-welded specimens and (b) Cruciform type specimens.

Figure 2. Figure 1 from K anvinde (2009): Typical details with low-eccentricity, transversely loaded welds.

For the detail shown in Figure $1(b)$ and $(c), L_{\text {shear }}$ and $L_{\text {tension }}=0.3125 \mathrm{in}$., and for each inch of weld, and for two welds,

$$
A_{\text {throat }}=2 \times 1.0 \text { inch } \times 0.22 \text { inch }=0.44 \mathrm{in}^{2}
$$

Therefore, for each inch of weld in the WTC7 knife connection, the capacity for transverse loading only is

$$
\mathrm{P}_{\mathrm{u}}=1.5 \times 0.6 \times 0.44 \mathrm{in}^{2} \times \mathrm{F}_{\mathrm{u}, \mathrm{weld}}=0.40 \times \mathrm{F}_{\mathrm{u}, \text { weld }}=0.40 \times 70 \mathrm{ksi}=27.7 \mathrm{kips}
$$

N ote that this is the capacity per inch of connection depth, as it accounts for both welds. Similarly, hereafter all predicted capacities are per inch of connection depth.

For longitudinal Ioading alone, the capacity would be $\mathrm{V}_{\mathrm{u}}=27.7$ kips/1.5 $=18.5$ kips per inch of connection depth. For both transverse and longitudinal loads, the accepted interaction equation is:

$$
\begin{equation*}
1 \geq\left(\mathrm{V} / \mathrm{N}_{\mathrm{u}}\right)^{2}+\left(\mathrm{P} / \mathrm{P}_{\mathrm{u}}\right)^{2} \tag{2}
\end{equation*}
$$

where
V = applied shear load/inch of weld
$\mathrm{V}_{\mathrm{u}}=$ Iongitudinal capacity/inch of weld
P = allowable transverse load/inch of weld
In the present case, under 1.0D $+1.0 \mathrm{SDL}+0.25 \mathrm{~L}$, the knife connection must transmit 41.3 kips of vertical shear. Equation 2 yields a transverse load capacity only slightly less than that for transverse loading alone, 27.4 kips/inch of connection depth
[Note: a check of other possible failure mechanisms for such a connection would show that failure due to combined load yielding of the welds would not be the governing mechanism. Rather, the governing mechanism would be yielding of the angles, which would occur at about 1.4 kips per inch of connection depth.]

JA-4026

It should be noted that this capacity according to Equation 1 is independent of the toughness of the weld material, and al so independent of the eccentricity of the transverse load to the weld line in the detail. Note al so that this value assumes that the full strength of the weld material can be mobilized before its ductility is exhausted. If the elasto-plastic stress and strains at the front of the crack-like root notch reach a critical value before the ultimate strength is attained across the weld throat, the weld will fracture at a load less than that predicted by the AISC equation (1). This possibility was recently examined, in connection details with low eccentricity, by K anvinde et al. (2009). Their alternative approach is presented next.

3.0 NON-LINEAR FRACTURE MECHANICS APPROACH

Two timely and highly relevant studies on capacity of transversely loaded weld details are Kanvinde et al. (2009) and K anvinde et al. (2008). These experimental and computational studies address the problem of fillet welds loaded transversely to the weld axis, using the cruciform configuration shown in Figure 2b. In such configurations, K anvinde (2009) note that the weld is situated at the tip of a crack-like root notch. The key question governing weld strength is whether there is ductile mobilization of ultimate strength of the weld material before it exhausts its fracture toughness, in the form of the non-linear fracture mechanics parameter, Jıc.

Kanvinde (2009) performed 24 tests, varying weld electrode type (E70T7 and E70T7-K 12 enhanced toughness, both Grade 480 MPa , the same strength used in the WTC7 knife connections), weld size (8 and 16 mm), and notch length 32 and 64 mm . Significantly, K anvinde also described a general approach, based on non-linear fracture mechanics computation and testing, that can be applied to other configurations with larger eccentricity.

There are three significant observations resulting from these recent K anvinde papers:

1. The state-of-the-practice, represented by equation 1, appears to work well for connections of the type shown in Figure 2. However, doubt is cast on the applicability of this equation for connections with "...notch lengths significantly Iarger than those tested...", and on connections using non-toughness rated welds. The WTC7 connections had notch lengths significantly larger than those tested by Kanvinde, and, being pre-Northridge designs, likely did not use modern toughnessrated welds.
2. The non-linear fracture mechanics approach used by K anvinde is the state-of-the-art technique for predicting connection capacity when it is limited by weld toughness. Both material and geometric non-linearity are included in their 2D finite element calculations of crack driving force, J_{1}. This approach is used in the present investigation, in both 2D and 3D. This approach permits generalization to connection geometries significantly different than that shown in Figure 1b, and including shear as well as tensile loading on the weld.
3. Kanvinde, and many other investigators, point out the substantial difference in toughness that might exist among various weld electrodes. The types tested by K anvinde met or closely approximated the post-Northridge requirement of $20 \mathrm{ft}-\mathrm{lb}$ (impact CVN value) at $21^{\circ} \mathrm{C}$. This observation led to the sampling, presented later herein, of results from post-N orthridge investigations of electrode toughnesses.
4. The non-linear fracture mechanics-based predictions from K anvinde correlated well with the A ISC strength prediction for the connection types shown in Figure 2.

4.0 PRESENT INVESTIGATION OF WTC7 KNIFE CONNECTION

This section follows up on the Kanvinde investigation by applying the non-linear fracture mechanics approach used therein to the particular case of the high-eccentricity WTC7 knife connection. All of the observations and conclusions in K anvinde (2009) are based on testing and simulation of the cruciform test configuration, Figure 1b. This configuration, although providing transverse loading to the weld, does not replicate the prying action of the outstanding leg seen in the case of the knife connection. It does not reproduce the high ratio of bending stress to normal stress across the weld which obtains in the knife connection, and it does not reproduce the additional prying action caused by vertical shear of the weld. Certainly, previous testing on the lap weld configuration (Figure 1a) is even more dissimilar to the knife connection. Consequently, the J-demand curves produced in Kanvinde (2009), Figure 3, might not be applicable to the knife connection. Therefore, the following actions have been taken:

1. Perform preliminary, FRA NC2D elasto-plastic (small displacement) analyses on a 2D cross-section of the knife connection (based on Frankel Steel Limited Drawing No. 1091, Rev May 23 1985);
2. Perform A NSY S elasto-plastic (large displacement) analyses on a 2D cross-section of the knife connection;
3. Survey literature for toughness values of various pre- and post-N orthridge electrodes; and
4. Perform A NSY S elasto-plastic (large displacement) analyses on a fully 3D model of the knife connection (based on Frankel Steel Limited Drawing No. 1091, Rev M ay 23 1985), including the effects of shear load, weld return, and load order effects.

4.1 FRANC 2D Elasto-plastic (small displacement) A nalyses on a 2D Cross-section of the K nife C onnection

FRANC2D (Bittencourt et al., 1996) was used to compute load-displacement curves, elastoplastic stress fields in the connection, especially in the weld area, $\Delta / L_{\text {shear }}$ values, and J। values for comparison to Jıc values obtained by Kanvinde (2009), Table 1. These computations were exploratory, used to create an experience base and to form bases for verification of later 2D and 3D analyses.

Note that the J_{Ic} value measured by K anvinde and most likely an upper bound to the WTC7 knife connections is that for the E70T7, 8 mm weld, $145 \mathrm{kPa} \mathrm{m}(0.83 \mathrm{k} / \mathrm{in}$). Note also that this calibrated value is only about 35% of the toughness of the same size weld in the enhanced toughness weld material. K anvinde (2009) defines a particular, specimen dependent, weld elongation measure, $\Delta / L_{\text {shear, }}$, shown in Figure 4 , as a metric for weld ductility. A similar definition is used for the FRANC2D results reported herein.

For all of the FRANC2D results reported herein, the following conditions prevailed:

- $E=29,000 \mathrm{ksi}$, Poisson's ratio $=0.3$, von M ises isotropic strain hardening constitutive model (same used in Kanvinde (2009)), with $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$ in the angle and column materials. This yield strength, rather than angle design strength of 44 ksi , was assumed because 49.6 ksi corresponds to the average yield strength of CSA G40.21-44W steel based on the available mill test reports (refer to Section 3.4.1 of GNA main summary report). $\mathrm{F}_{\mathrm{u}}=77 \mathrm{ksi}$ was used in the weld material. (K anvinde (2009) measured a mean value of 76 ksi on E70T7 filler metal, Table 2; 77ksi also corresponds to the use of an expected strength factor of 1.1 on the design strength of 70 ksi , which is prescribed by ASCE/SEI 41-06 (refer to Section 3.4.1 of GNA main summary report). A strain hardening modulus of 100 ksi was used. K anvinde (2009) did not report the stress strain
curves from their tests. This modulus was varied by a factor of ten, up and down, with only about a 10\% change in key output values in FRANC2D.
- FRANC2D uses the standard incremental-iterative technique during elasto-plastic analysis. Loads were applied in 10 equal increments, and a tolerance of 0.0005 on both displacement and residual load was used.
- In FRANC2D, a crack tip in an elasto-plastic material is surrounded by a symmetric template of collapsed Q8 elements with uncoupled crack tip nodes, Figure 5b. This is a standard technique to represent crack tip blunting under infinite strain with finite stress. All other elements are either standard Q8 or T6 types, Figures 5a.
- Half-symmetry was used on a plane strain cross-section of the knife connection. Also, a portion of the column flange was added so that an accurate representation of the fields in and around the weld could be obtained.

Fig. 13. Schematic plot showing the dependence of the toughness demand $(J-$ integral) on root notch length for various deformations.

Figure 3. Figure 13 from K anvinde (2009). J-demand relationship for cruciform connections with low eccentricty. A rrows and their values added herein.

Table 1. Table 5 from K anvinde (2009)
Table 5
Calibrated $J_{I C}$ values for different weld sizes and classifications

Weld classification	Weld size (mm)	Average $_{J_{\text {IC }}}(\mathrm{kPa} \mathrm{m})$	COV
E70T7	12	205	0.21
	8	145	0.21
E7077-K2	12	406	0.19
	8	417	0.24

Table 2. Table 1 from K anvinde (2009).

Table 1
Results from tension tests and Charpy V Notch Tests

Filler metal	Test	Tension tests				CVN energy (J)		
		$F_{y}{ }^{\text {a }}$ (MPa)	$F_{u}{ }^{\text {b }}$ (MPa)	d_{o} / d_{f}	$\varepsilon^{\text {c }}$	$-29^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	$100{ }^{\circ} \mathrm{C}$
E7017 (Grade 480)	1	523	669	1.35	0.60	7.5	25.8	55.6
	2	530	670	1.15	0.28	8.1	24.4	55.6
	Mean	526	670	1.25	0.45	7.8	25.1	55.6
E70T7-K2 (Grade 480)	1	570	672	1.65	1.00	40.7	75.9	119.3
	2	572	672	1.74	1.11	31.2	84.1	119.3
	Mean	571	672	1.69	1.05	35.9	80.0	119.3

${ }^{\text {a }}$ Measured yield stress, based on 0.2% offset method; static value.
${ }^{\mathrm{b}}$ Measured ultimate strength; static value.
${ }^{c} \varepsilon=\ln \left(d_{0} / d_{f}\right)^{2}=$ average true strain across necked cross section of tension coupon.

Fig. 12. Deformed finite element mesh of cruciform specimen, with inset figure showing a magnified view of the equivalent plastic strain contours in the notch tip region.

Figure 4. Figure 12 from K anvinde et al. (2008), showing the definition of the weld
deformation, $\Delta / L_{\text {shear. }}$.

The results of the FRANC2D analyses are as follows:

Deformed shape of knife connection at maximum load: Figure 5 c shows the predicted displaced shape (without amplification) at a predicted load of $3.25 \mathrm{kips} / \mathrm{inch}$ of weld (for both welds). Clearly, at this load level the deformations are large enough to cause some error in the field results due to the small displacement assumption used in FRA NC2D. The last of ten load increments required about 3000 iterations to converge to this load, and no convergence was achieved at a load level higher than 4.38 kips/inch of weld. Figure 6 shows the FRAN2Dpredicted load-displacement relationship, with a capacity of 3.25 kips/inch of weld indicated, based on a suspected upper-bound value of $J_{\text {Ic }}$ of $0.83 \mathrm{kips} / \mathrm{inch}$.

Stress and Strain fields: Figure 7a shows contours of y-stress component at a load of 3.25 kips/inch of weld. It can be seen in this figure that this stress in the vicinity of the crack tip has substantially exceeded weld material F_{u}. Kanvinde (2009) measured a mean $F_{u}=97$ ksi on E70T7.

Figure 7b shows contours of von M ises effective stress at a slightly higher load of 3.75 kips/inch of weld. This effective stress combines all the stress components active in a non-uniaxial situation, like that in effect here. A ccording to the von M ises yield criterion, most commonly applied to structural steels and their weld materials, the local yield strength of such materials depends on the local multiaxial stress state. Y ielding occurs when the von M ises effective stress reaches the yield strength of the material in uniaxial tension, F_{y}. The contours in Figure 7b show that the effective stress is substantially above uniaxial yield, 77 ksi here, and above F_{u} on some sections, along the double-arrowed line emanating from the crack tip and terminating at the weld surface.

Taken together, these 2 predictions indicate that the weld has fully yielded and begun to substantially strain harden at a load between 3.25 and 3.75 kips/inch of weld, and, in a nonfracture mechanics sense, also begun to fail from the crack front.

Fracture mechanics parameters: As noted in Table 1, above, K anvinde (2009) calibrated inelastic fracture toughness values, Jı, through a combination of physical testing and finite element analyses of the test configurations. Using additional finite element analyses, they extrapolated their predictions through a set of J-demand versus normalized weld deformation curves shown in Figure 3. Figure 8 shows the FRANC2D-predicted normalized weld deformation plot for the knife connection, and indicates a peak value for this geometry of about 0.025. U sing this value and the notch length in the knife connection of about 84 mm leads to a Jdemand of about $80 \mathrm{kPa}-\mathrm{m}$ ($0.46 \mathrm{kips} / \mathrm{in}$). FRANC2D does not have the capability to directly compute J; however, it can compute crack-tip-opening-displacement (CTOD, δ_{t}). A well-known, approximate relationship, based on empirical testing and finite element analysis, between J and δ_{t} is

$$
\begin{equation*}
J=M \times F_{y} \times \delta_{t} \tag{3}
\end{equation*}
$$

where M is a dimensionless constant which varies between 1.15 and 2.95 , with a generally accepted value of about 2 for moderate strength steels. FRANC2D predicts the load vs. δ_{t} relationship shown in Figure 9, with a $\delta_{t}=0.0057$ inch at a load of $3.25 \mathrm{kips} / \mathrm{inch}$ of weld. Consequently, at this load FRA NC2D predicts J। $=0.88 \mathrm{kips} / \mathrm{in}(171 \mathrm{kPa} \mathrm{m})$, close to the demand predicted in Figure 3 and the critical value, Jıc, of $0.83 \mathrm{kips} / \mathrm{in}(145 \mathrm{kPa} \mathrm{m}$) measured by Kanvinde (2009) for E70T7 weld metal, Table 2. This fracture-mechanics-based failure prediction is wholly consistent with the failure prediction based only on observation of the stress fields, cited above, and seen in Figure 7.

Figure 5a. Un-deformed FRANC2D mesh of WTC7 knife connection using symmetry.

Figure 5b. Detail of mesh in Figure $5 a$ around weld and crack front.

Figure 5c. FRA NC2D-predicted deformation at load $=3.25$ kips. Prying action on the fillet weld evident. No amplification.

Figure 6. Predicted load-displacement relationship from FRANC2D, small displacement theory. The Jıc limit shown is for a suspected upper-bound value of $0.83 \mathrm{kips} / \mathrm{in}$ obtained by K anvinde (2009) for E70T 7 weld filler. No shear force included.

Figure 7. (a) FRANC2D-predicted y-stress contours at a load of 3.25 kips/inch of weld; (b) effective stress at a load of $3.75 \mathrm{kips} /$ inch of weld on deformed shape (magnification $=1$).

These exploratory results from a FRA N C2D study of the knife connection indicate that the A ISC equation substantially over-predicts weld capacity in the WTC7 knife connection: 27.4 versus 3.25 to 3.75 kips per inch of weld. The most likely reason for this over-prediction is that the AISC equation assumes no bending in the weld. Prying action arising from high eccentricity is not acknowledged: the throat area is assumed to be uniformly loaded to F_{u}. Although the cruciform configuration used in the Kanvinde studies creates some eccentricity on the weld, it does so only by increasing the thickness of the loaded plate: this results in a much more direct load path through the weld with no prying action and, therefore, a low ratio of bending to normal stress across the weld. For example, Figure 10a shows a FRANC2D finite element model of one of the cruciform details tested and analyzed by K anvinde. Figure 10b shows contours of x-component stress in a weld region under a load of 5 kips per inch of weld on the displaced shape at a magnification factor of 100 . This figure shows very low levels of crack opening, i.e. no prying action, and stress levels below yielding, even at the crack front. Figure 11a shows the FRANC2D-predicted distribution of x-stress along a radius emanating from the crack tip and terminating at the weld toe in Figure 10b. This plot is another indication of a low level of eccentricity in that the distribution is entirely tensile.

In contrast, Figure 11b shows the FRANC2D-predicted distribution of y-stress along a radius emanating from the crack tip and terminating at the weld toe in the WTC7 connection. The effect of bending in the weld is clearly evident, as over one-half of this radius is in compression. Entirely unlike the cruciform connection, in the knife connection the weld capacity is limited by the difference in the force resultants computed from the tensile and compressive areas shown in this figure: for a given F_{u}, load capacity of the weld is proportional to difference between area in tension (T) and area in compression (C).

Figure 8. Predicted load versus normalized weld deformation, $\Delta / L_{\text {shear. }}$
From FRANC2D with small displacement theory.

Figure 9. Predicted load versus crack tip opening displacement, $\delta_{\text {t. }}$ From FRANC2D with small displacement theory.

4.2 ANSY S Elasto-plastic (large displacement) A nalysis on a 2D C ross-section of the K nife C onnection

ANSYS has Iarge displacement capability. Consequently, it was used to follow up on the FRA NC2D calculations both to verify and to extend these to the large deformation regime. In all the 2D ANSYS analyses used herein, the same types of elements as those used by FRANC2D were employed. How ever, A NSY S does not use collapsed Q8 elements around the crack tip, but does compute values of J_{I} at a crack tip directly rather than using the indirect method involving the intermediate calculation of $\delta_{\text {t }}$.

Figure 12 shows the ANSY S-predicted load-displacement plot. At a load level of 4.7 kips/inch of weld, ANSY S predicts a $\mathrm{J}_{1}=0.83 \mathrm{kips} / \mathrm{in}(145 \mathrm{kPa} \mathrm{m})$, the upper-bound critical value, J_{I}, measured by K anvinde (2009) for E70T 7 weld metal. The von M ises effective stress distribution in the weld at this load level is shown in Figure 13. These stress results show consistency with those from FRANC2D; however, there is a significant difference in the predicted loaddisplacement plots due to the large deformations involved. Therefore, ANSYS large deformation capability will be used in the 3D cal culations to follow.

4.3 Information on T oughness V alues for W eld Materials

The value of Jıc, $0.83 \mathrm{kips} / \mathrm{in}$, determined by Kanvinde for post-N orthridge E70T 7 electrode is likely an upper-bound on the toughness in the WTC7 knife connection. Tables 3 and 4 contain toughness data in 3 forms for selected pre- and post-Northridge weld electrodes of the E7X series (7X ksi yield strength). In Table 3, the original source data is in the form of impact CV N values (in red). Empirical conversions from impact CVN values to K_{lc} values are given in Barsom and Rolfe (1987). For the transition region of the CV N data,

$$
\begin{equation*}
\mathrm{K}^{2}{ }_{\mathrm{lc}}=5^{*} \mathrm{E} * \mathrm{CVN} \quad \text { (psi sqrt(in), psi, ft-lb) } \tag{4}
\end{equation*}
$$

Figure 10. (a) FRANC2D model of cruciform connection tested and analyzed by K anvinde (2009). (b) Contours of x-stress in weld region at a load, P, of $5 k i p s / i n c h$ of weld. Displacement magnification factor is 100 .

Figure 11. (a) Distribution of x-stress along dashed line shown in Figure 10b, cruciform connection. (b) Distribution of y-stress along line $A-B$ shown in Figure 7a, knife connection.

Equation 4 is used for the conversion from measured CVN values in Table 3, because it has been observed (Tide, 1998; Fisher, 1996) that, at $21^{\circ} \mathrm{C}$, E70-T4 welds do not produce upper-shelf behavior and toughness. They fail in cleavage at relatively low values of CVN. The theoretical conversion from $\mathrm{K}_{\text {Ic }}$ to J Ic values is:

$$
\begin{equation*}
J_{\mathrm{lc}}=\mathrm{K}^{2}{ }_{\mathrm{Ic}}\left(1-v^{2}\right) / \mathrm{E} \tag{5}
\end{equation*}
$$

Note that there was a very wide range of results observed in CV N values for this electrode.

For the upper shelf region of the CV N data,

$$
\begin{equation*}
\left(K_{\text {Id }} / F_{y}\right)^{2}=5\left[C V N / F_{y}-0.05\right] \quad(\text { ksi sqrt(in), ksi, ft-lb) } \tag{6}
\end{equation*}
$$

Equation 6 is used for the conversion from measured CVN values in Table 4, because it has been observed that, at $21^{\circ} \mathrm{C}$, the weld materials cited therein produce upper-shelf behavior and toughness. In Table 4, the source data is again CVN values. However, in the K anvinde study, J Ic values (in blue) were also obtained through a calibration of finite element models with physical experiments. These values are about four times higher than those expected from the conversion predicted by equation 6. These data show that the post-Northridge toughness-rated electrodes produced J_{lc} values 1 to 2 orders of magnitude higher than the lowest value attributed to E70T4 non-toughness-rated electrode. In particular, the J_{Ic} value used in previous preliminary reports, $0.83 \mathrm{kips} / \mathrm{in}$, is 83 times higher than the lowest value shown in Table 3.

Figure 12. Predicted load-displacement relationship from A NSY S 2D with large displacement theory. The Jı limit shown is for an upper-bound value of $0.83 \mathrm{kips} / \mathrm{i}$. No shear force included.

Figure 13. 2D A NSY S-predicted effective stress contours (ksi), on deformed shape (magnification $=1$) at a load of $4.7 \mathrm{kips} /$ inch of weld, Iarge deformation theory.

Table 3. Sampled Toughness Information for Pre-N orthridge E70T-4 W eld Electrode

Electrode	CVN Min, J (ft-lb) @21 C	$\begin{aligned} & \text { CVN Max, J } \\ & \begin{array}{l} \text { (ft-lb) } \\ \text { @21 C } \end{array} \end{aligned}$	$\begin{aligned} & K_{\mathrm{lc}} \operatorname{Min}^{\mathrm{a}} \\ & \mathrm{MPa} \mathrm{~m}^{1 / 2} \\ & \left(\mathrm{ksin}^{1 / 2}\right) \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{lc}} \text { Max }^{\mathrm{a}} \\ \mathrm{MPa} \mathrm{~m}^{1 / 2} \\ \left(\mathrm{ksi}^{1 / 2}\right) \end{gathered}$	$\mathrm{J}_{\mathrm{Ic}} \mathrm{Min}^{\mathrm{b}}$ kPa m (k/in)	$\begin{gathered} \mathrm{J}_{\mathrm{Ic}} \text { Max }^{\mathrm{b}} \\ \text { kPa m } \\ (\mathrm{k} / \mathrm{in}) \end{gathered}$	Source
E70T-4	8 (6)	$\begin{aligned} & \hline 26 \\ & (19) \end{aligned}$	$\begin{aligned} & \hline 31.9 \\ & (29) \end{aligned}$	$\begin{aligned} & \hline 57.1 \\ & (52) \end{aligned}$	4.8 (0.027)	$\begin{gathered} 15.1 \\ (0.086) \end{gathered}$	Ojdrovic, 1997
E70T-4 (avg)	NA	$\begin{gathered} \hline 18.6 \\ (13.7) \end{gathered}$	NA	$\begin{aligned} & 49.5 \\ & (45) \end{aligned}$	NA	$\begin{gathered} 10.9 \\ (0.062) \end{gathered}$	Civjan, 2000
E70T-4	$\begin{gathered} 4 \\ (2.9) \end{gathered}$	$\begin{gathered} 29 \\ (21.3) \end{gathered}$	$\begin{aligned} & \hline 23.1 \\ & (21) \end{aligned}$	$\begin{aligned} & \hline 61.5 \\ & (56) \end{aligned}$	2.3 (0.013)	$\begin{gathered} 17 \\ (0.097) \end{gathered}$	Fisher, 1996
using equation 4							

4.4 ANSY S E lasto-plastic, L arge Displacement A nalysis on 3D M odels of the K nife Connection

Under 1.0D +1.0 SDL +0.25 L , the knife connection analyzed in this report must transmit 41.3 kips of vertical shear, through a bolt group whose centerline is 2.5 inches from the face of the column. Because of this eccentricity, this shear force will increase the tension force, and hence the J। value, at the top of the weld, and create a gradient of J-values along the vertical portion of the weld. Also, one-half inch returns were called out on the WTC7 knife connection. Twodimensional FE models cannot account for effects of this shear force and the returns. Therefore, to compute more realistic values of J_{I}, two fully 3D FE models of the connection were used, one without the weld returns, and one with the returns. These models were analyzed using the large displacement option, and with the proper distribution of yield strengths in the column, angles, and weld. In all the 3D A NSY S analyses described herein, quadratic order brick and tetrahedral elements were used, and, except as noted, J, values along a crack front were computed directly by ANSYS.

Table 4. Sampled Toughness Information for Post-N orthridge W eld Electrodes

Electrode	CVN Min, J (ft-lb) $@ 21^{\circ} \mathrm{C}$	CVN Max, J (ft-lb) $@ 21^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{K}_{\mathrm{lc}} \text { Min } \\ \mathrm{MPa} \mathrm{~m}^{1 / 2} \\ \left(\mathrm{ksi}_{\mathrm{in}}{ }^{1 / 2}\right) \end{gathered}$	$K_{\text {Ic }}$ Max MPa m ${ }^{1 / 2}$ (ksi in ${ }^{1 / 2}$)	$\mathrm{J}_{\mathrm{Ic}} \mathrm{Min}$ kPa m (k/in)	J_{Ic} Max kPa m (k/in)	Source
$\begin{gathered} \hline \text { E70T-7 } \\ 8 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline 24.4 \\ (17.9) \end{gathered}$	$\begin{aligned} & \hline 25.8 \\ & (19) \end{aligned}$	NA	$\begin{aligned} & 180^{e} \\ & (164) \end{aligned}$	NA	$\begin{aligned} & 145^{c} \\ & (0.83) \end{aligned}$	Kanvinde, 2009
$\begin{gathered} \text { E70T-7-K2 } \\ 8 \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline 75.9 \\ (55.8) \end{gathered}$	$\begin{gathered} 84 \\ (61.8) \end{gathered}$	NA	$\begin{aligned} & 305^{e} \\ & (278) \end{aligned}$	NA	$\begin{aligned} & 417^{c} \\ & (2.4) \end{aligned}$	Kanvinde, 2009
E71T-8 (avg)	NA	$\begin{aligned} & 94.9 \\ & (70) \end{aligned}$	NA	$\begin{aligned} & 111^{\mathrm{d}} \\ & (101) \end{aligned}$	NA	$\begin{aligned} & 56.1^{b} \\ & (0.32) \end{aligned}$	Civjan, 2000

${ }^{\text {c }}$ calibrated using finite element calculations and physical tests
${ }^{\text {d }}$ using equation 6
${ }^{e}$ using calibrated $J_{\text {Ic }}$ values and equation 5

4.4.1 Results without W eld Returns

The 3D model without returns has two purposes. First, when analyzed without vertical shear, it provides verification of the J-results from the 2D ANSY S models. Second, when analyzed with vertical shear, it provides a baseline for comparison for the effects of the returns on capacity. Figure 13 shows the ANSYS 3D finite element model excluding the weld returns. Figure 14 shows the results from this model in the form of a plot of maximum J। versus applied tension load on the connection; Figure 15 shows a detail of this plot. Figure 14 shows that a tensile capacity of 4.7 kips/inch of weld, previously shown from 2D analysis in Figure 12, is again obtained with an upper-bound value of $\mathrm{J}_{\mathrm{lc}}=0.83 \mathrm{kips} /$ inch, when the vertical shear force in not included. This result verifies those of the 2D ANSY S model.

With the shear force acting, Figure 14 shows that the predicted capacity decreases to about 3.6 kips/inch of weld at this upper bound value of toughness. The predicted capacity including shear decreases further when the lower values of J_{Ic} suggested by Table 3 are used. For example, using the highest toughness value shown in Table 3, $0.10 \mathrm{kips} / \mathrm{in}$, Figure 15 shows that the predicted tensile capacity is about $1.4 \mathrm{kips} / \mathrm{inch}$ of weld. Using the lowest value in Table 3, $0.01 \mathrm{kips} / \mathrm{in}$,
the weld would have begun to crack at its top under shear alone. Such cracking would have been stable, however, as the J-values decrease when proceeding downwards from the top of the weld and eventually reach zero. However, at this low value of toughness, the connection would have no additional capacity for tensile loading.

4.4.2 Results with W eld Returns

One-half inch returns were called out on the WTC7 knife connection. Figure 16a shows a typical view of the deformed shape of the ANSYS 3D finite element model including the weld returns with shear applied. Figure 16b shows a detail of this model around one of the returns.

Figure 13. 3D A N SY S FE model without weld returns used to calculate effect of the returns and of vertical shear on J, values.

Figure 14. Comparison between maximum J, values in the weld, with and without vertical shear force on the connection, no returns. Detail at low values of $\|_{l, \max }$ shown in Figure 15.

Figure 15. Detail of data shown in Figure 14. Dashed lines indicate capacity at a toughness of $0.10 \mathrm{kips} / \mathrm{inch}$.

Figure 16. (a) Displaced shape of A NSY S model with weld returns at a tensile load of 3.75 kips/inch of weld, with shear, and a magnification factor of 2 , view looking from top to bottom of connection. (b) Detail of model around a weld return.

A NSY S allows sequencing of loads, therefore, in all the results reported here with returns, all of the shear load was first applied, and then the tensile load was applied incrementally. As a check, in an additional analysis both load components were incrementally applied simultaneously. There was less than one percent difference in the maximum J value between the two methods.

Figure 17 shows the predicted relationship between tensile load and maximum value of J along the weld, including shear, with and without the returns. This comparison shows one of the effects of the weld returns: to decrease the $J_{I \max }$ value for a given tensile load. Figure 18 shows details of this relationship at low values of $\mathrm{J}_{\text {Imax. }}$. At a toughness level of about 0.10 kips/inch, the highest measured value shown in Table 3, predicted tensile capacity including shear loading and the returns increases from about 1.35 to about 1.9 kips per inch of weld. At the lowest measured pre-Northridge toughness level of E70-T4 weld material, about 0.013 kips/in, no tensile capacity is available.

Figure 17. M aximum J। along weld versus tensile load, including shear, with and without and weld returns. Detail at low values of $J_{I, \max }$ shown in Figure 18.

Figure 18. M aximum J। along weld versus tensile load, including shear, with and without and weld returns. Detail at low values of $\mathrm{I}_{1, \text { max }}$. Dotted lines indicate capacity at highest measured toughness of pre-N orthridge E 70-T4 weld material, black, and at median value ($0.038 \mathrm{kip} / \mathrm{in}$), red, shown in Table 3.

A lso shown in Figure 18 is a predicted capacity of about 0.85 kips per inch of connection depth at a median toughness of 0.038 kips/inch. M easured toughness data from the sources listed in Table 3 are not normally distributed, rather they are skewed towards very low values. Therefore, the expected value of toughness is not the mean value.

The second effect is shown in Figure 19. Figure 19a shows the distribution of J values along the entire weld at an example load level. A long the upper return, the only one of concern here, J values decrease to nearly zero at the intersection of the return with the vertical section of the weld, then rapidly rise along this section. Figure 19b compares the J distribution along the
vertical section of the weld, with and without the returns. It can be seen that the return is most effective over only about the first two inches of this section of the weld. In summary, the returns have a significant effect on the maximum value of J along the weld, and change its location from the case without the returns. However, Figures 17 and 18 confirm that, even with returns, the capacity of the WTC7 knife connection predicted using a state-of-the-art analysis is still a small fraction of that predicted using AISC recommended practice.

5.0 SUM MARY

The purpose of this report was to investigate the capacity of a beam-column knife connection of the type used in the WTC7. This type of connection was designed for transfer of vertical shear load, by longitudinal loading of the fillet welds; however, in supplying lateral restraint against buckling of the column, it would also have to transmit direct tension load, by transverse loading of these welds.

The investigation was confined to analytical and computational activities, comparing capacity predictions based on the state-of-the-practice, according to AISC recommended analysis practice, with those based on state-of-the-art non-linear fracture mechanics calculations via the finite element method.

The salient observations and conclusions of this investigation are:

- The WTC7 knife connection has a large eccentricity in the transverse loading direction. No data could be found, from either computation or physical testing, concerning combined longitudinal and transverse capacity of such a design.
- AISC recommended state-of-the-practice predicts a combined longitudinal and transverse capacity of the WTC7 knife connection of 27.4 kips per inch of weld, considering weld failure only and disregarding flexural failure of the angles.
- This AISC-based prediction is independent of both the degree of eccentricity in the transverse direction and the toughness of the weld material.

- A recent investigation by K anvinde et al. (2009) involving both physical testing and nonlinear fracture mechanics analysis of transversely loaded weld details has shown that capacity of such details is sensitive to toughness, rather than strength, of the weld material. However, this investigation used details with very low transverse eccentricity and its conclusion that AISC practice is applicable to transversely loaded weld details does not cover the WTC7 detail.
- The non-linear fracture mechanics approach presented by Kanvinde et al. represents a general, state-of-the-art approach to predicting the combined capacity of a detail with any level of transverse eccentricity under combined loading. This approach was used in this investigation to predict the capacity of the WTC7 knife connection.
- Exploratory 2D finite element implementation of this approach using FRANC2D was first performed. The results of the 2 D analyses showed that predicted capacity, under transverse loading alone, was in the range of 3.25 to 3.75 kips/inch of weld, using an

Figure 19. (a) Predicted distribution of J। along entire length of weld with weld returns, for tensile load of 3.75 kips/inch of weld. (b) Comparison of distribution of J। along length of vertical section of weld with and without weld returns, for tensile load of $3.75 \mathrm{kips} / \mathrm{inch}$ of weld.
upper bound toughness for the weld material which is greater than the toughness of the weld material used on the WTC7 connections. Results also showed that large deformation analysis technique would be required because of the significant bending in the outstanding legs of the angles in the WTC7 connection, even under relatively low transverse loading.

- 2D, large deformation analysis was next performed using A NSY S. Using the same upper bound value of toughness which is greater than the toughness of the weld material used
on the WTC7 connections. ANSY S predicted a transverse capacity of 4.7 kips/inch of weld.
- The upper bound value of weld material toughness used in these exploratory studies is characteristic of post-Northridge earthquake welding practice. An investigation of the literature immediately following the 1994 Northridge earthquake event showed that toughness of commonly used pre-Northridge weld materials was significantly lower than this upper bound value. Table 3 shows that limiting values of crack driving force, J J_{l}, for common pre-Northridge electrodes used in beam-column connections are both highly variable and relatively low when compared to those for post-Northridge, toughness-rated electrodes, Table 4. In particular, some measured values of toughness of E70-T4 weld electrode were as low as about 1% of the upper bound value. A measured median value for the pre-Northridge E70T-4 electrode toughness (CVN) data is about $8.25 \mathrm{ft}-\mathrm{lb}$, corresponding to a Jıc of about 0.038 kips/inch.
- 3D finite element analysis was necessary to capture the effects of shear loading on the detail and of the one-half inch long weld returns called out in the WTC7 connection.
- Two 3D ANSYS models were built and thoroughly analyzed, one with and the other without the returns. Results without the returns under combined loading showed that the predicted connection capacity was about 1.4 kips/inch of weld using the highest measured value of toughness of pre-Northridge E70-T4 weld electrode, Figure 15. Results including the returns showed that the predicted capacity increased to about 1.9 kips/inch of weld, Figure 17. This value is only about 7\% of that predicted by AISC recommended practice for weld capacity. At the lowest measured pre-Northridge toughness level of E70-T4 weld material, about $0.013 \mathrm{kips} / \mathrm{in}$, no tensile capacity is available, Figure 18.
- Based on the results from these 3D analyses, and on a review of pre-Northridge weld metal toughnesses, a transverse capacity of the WTC 7 knife-type connection of
0.85 kip/inch of weld, based on the median toughness value for pre-Northridge electrodes, is reasonable and recommended.
- The most likely reason for this over-prediction is that the AISC method assumes no bending in the weld. Prying action arising from high eccentricity is not acknowledged: in the limit, the throat area is assumed to be uniformly loaded to F_{u} in tension. The 3D nonlinear finite element analyses performed herein show a highly non-uniform distribution of normal stress across the weld throat of the knife connection, including a significant amount of compression, Figure 11b. Although the cruciform configuration used in the K anvinde studies creates some eccentricity on the weld, it does so only by increasing the thickness of the loaded plate: this results in a much more direct load path through the weld with no prying action and, therefore, a low ratio of bending to normal stress across the weld, Figure 11a.
- Since the capacity predictions using non-linear fracture mechanics depend on finite element analyses, they are subject to modeling errors, and require both verification and validation. M odeling errors can arise from a number of sources, but it is asserted that they are not significant enough here to have any major effect on the principal result: calculated weld capacity is much less than that predicted by the AISC approach. Potential modeling error sources that can be readily identified include:
- Idealization of the weld geometry. Some penetration of the fillet weld must have existed in the actual connection. It is also unlikely that the actual weld was uniform in cross-section along its length, or that the returns were exactly $1 / 2$ inch long. These unknown geometry conditions were neglected here.
- Idealization of the yield strength distribution in and around the weld. No attempt was made to include a HAZ and possible differences in yield strength therein compared to base materials and weld material.
Neither of these possible error sources would have a major effect on the highly localized fields around the crack front which are responsible for the corresponding J-value distribution along it. The fact is that there is no load redistribution mechanism available in the WTC7 knife connection. If a tear begins anywhere along the weld, the shed load
must be transferred to another portion of the same, highly loaded weld, causing continued tearing.
- Partial verification of the finite element modeling was obtained. The FRANC2D, small displacement results were consistent in expected trend with those obtained using ANSY S 2D, large displacement modeling. These ANSY S 2D results were verified with the 3D ANSY S model without returns and shear loading. Finally, the expected effects of the shear loading and returns were seen in the 3D ANSY S model with returns and shear loading. In all these FE analyses, quadratic order elements were used with tight tolerances on both load and displacement convergence metrics.

5.0 REFERENCES

Barsom J M., Rolfe S T, Fracture and Fatigue Control in Structures, Prentice-Hall, $2^{\text {nd }}$ Edition, 1987.

Bittencourt T, W awrzynek P, Sousa J, Ingraffea, A R. Quasi-A utomatic Simulation of Crack Propagation for 2D LEFM Problems. Eng. Fract. M ech., 55, 2, 321-334, 1996.

Chi W M , Deierlein G G. Integration of A nalytical Investigations on the F racture B ehavior of W elded M oment Resisting Connection, Final Report, SAC Task 5.3.3, Department of Civil and Environmental Engineering, Stanford University, Report \#136, 2001.

Civjan S, Engelhardt, M D, and Gross J L, Retrofit Of Pre-N orthridge M oment Resisting Connections, J Struct Eng, A SCE, 126, 4, 445-452, 2000.

Fisher J, Dexter R, K aufmann E J. Fracture mechanics of welded structural steel connections. FEM A No. 288, Report SAC 95-09, 1996.

K anvinde A M , Fell B V, Gomez I R, Roberts M, Predicting Fracture in Structural Fillet W elds Using Traditional and M icromechanical Fracture M odels, Eng Struct 30, 3325-3335, 2008.

K anvinde A M , Gomez I R, Roberts M , Fell B V, Grondin G Y , Strength and Ductility of Fillet W elds with Transverse R oot N otch, J C onstructional Steel Research, 65, 948-958, 2009.

From K anvinde et al., 2009:
[12] A merican Institute of Steel Construction, Inc (A ISC). Steel construction manual.13th edition. Chicago (IL , USA): A merican Institute of Steel Construction; 2005.
[17] CSA S16-01. Limit states design of steel structures. Toronto (Canada): Canadian Standards A ssociation; 1989.
[18] A merican Institute of Steel Construction, Inc (A ISC). M anual of steel construction. 2nd edition. Chicago (IL, USA): A merican Institute of Steel Construction; 1993.

Ojdrovic R P, Zarghamee M S, Fracture of steel moment connections in the N orthridge earthquake, Proc. Instn Civ Engrs Structs \& Bldgs, 1997, 123, M ay, 209-217, Paper 11123.

Tide R H R. Stability of weld metal subjected to cyclic and seismic loading, Eng Structs 20, 562569, 1998.

6.0 LIST OF PUBLICATIONS AUTHORED

The following is a list of publications authored by A.R. Ingraffea Ph.D., P.E. in the previous 10 years. (NOTE: Italics indicate present or former graduate students or post doctoral associates of Prof. Ingraffea)

B ook C hapters

1. Carter B J, Desroches J, Ingraffea A R, Wawrzynek P A. Simulating Fully 3D Hydraulic Fracturing. In Modeling in Geomechanics, Ed. Zaman, Booker, and Gioda, Wiley Publishers, pp 525-557, 2000.
2. Ingraffea A R, Wawrzynek P A. Crack Propagation. In the Encyclopedia of Materials: Science and Technology, Elsevier Science, 2001.
3. Ingraffea A R, Wawrzynek P A. Finite Element Methods for Linear Elastic Fracture M echanics. Chapter 3.1 in Comprehensive Structural Integrity, R. de B orst and H. M ang (eds), Elsevier Science Ltd., Oxford, England, 2003.
4. Ingraffea A R. Computational Fracture M echanics. V olume 2, Chapter 11, E ncyclopedia of Computational Mechanics, E. Stein, R. de B orst, T. Hughes (eds.) John Wiley and Sons, 2004, $2^{\text {nd }}$ Edition 2008.

Archival J ournal Publications

1. Chen C-S, Krause R, Pettit RG, Banks-Sills L, Ingraffea A R. Numerical A ssessment of Tstress Computation Using a P-version Finite Element M ethod. Int. J. Fract., 107:177-199, 2001.
2. Chi W-M, Deierlein GG, Ingraffea AR. Fracture Toughness Demands in Welded BeamColumn M oment Connections. J. Structural Division, A SCE, 126:88-97, 2000.
3. B Carter, CS Chen, LP Chew, N Chrisochoides, GR Gao, G Heber, AR Ingraffea, R. Krause, C Myers, D Nave, K Pingali, P Stodghill, S Vavasis, PA Wawrzynek. Parallel FEM Simulation of Crack Propagation -- Challenges, Status, and Perspectives. Lect. Notes Comput. Sci., 1800:443-449, 2000.
4. Spievak L, Lewicki D, Wawrzynek P, Ingraffea A R. Simulating Fatigue Crack Growth in Spiral Bevel Gears. Eng. Fract. Mech., 68:53-76, 2001.
5. Pettit R, Chen, C-S, Wawrzynek P, Ingraffea A R. Process Zone Size Effects on Naturally Curving Cracks. Eng. Fract. M ech., 68:1181-1205, 2001.
6. Chen C-S, Wawrzynek PA, Ingraffea AR. Residual Strength Prediction of Airplane Fuselages Using CTOA Criterion. AIAA J ournal, 40:566-575, 2002.
7. Chen C-S, Wawrzynek PA, Ingraffea AR. Prediction of Residual Strength and Curvilinear Crack Growth in A ircraft Fuselages," AIAA J ournal, 40:1644-1652, 2002.
8. Hwang CG, Wawrzynek, PA, Ingraffea AR. On the virtual crack extension method for calculating the derivatives of energy release rates for a 3D planar crack of arbitrary shape under mode-I loading. Eng. Fract. M ech., 68:925-947, 2001.
9. Lewicki D, Spievak L, Wawrzynek P, Ingraffea A R, Handschuh R. Consideration of M oving Tooth Load in Gear Crack Propagation Predictions. J. Mechanical Design, 123:118-124, 2001.
10. Cavalcante-Neto JBC, Wawrzynek PA, Carvalho MTM, Ingraffea AR. An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. Eng. With Computers, 17:75-91, 2001.
11. Hanson J H, Ingraffea, A R. Compression Loading A pplied to Round Double B eam Fracture Specimens. I: Application to Materials with Large Characteristic Lengths. J. Testing and Evaluation, 30:508-514, 2002.
12. Hanson JH, Ingraffea A R. Compression Loading A pplied to Round Double Beam Fracture Specimens. II: Derivation of Geometry Factor. J. Testing and Evaluation, 30:515-523, 2002.
13. Hanson JH, Ingraffea AR. Using Numerical Simulations to Determine the A ccuracy of the Size-Effect and Two-Parameter Data Reduction M ethods for Fracture Toughness Tests of Concrete. Eng. Fract. M ech., 70: 1015-1027, 2002.
14. Han T-S, Ural A, Chen C-S, Zehnder AT, Ingraffea AR, Billington SL. Delamination buckling and propagation analysis of honeycomb panels using a cohesive element approach. Int. J. F ract., 115:101-123, 2002.
15. Iesulauro E, Ingraffea AR, Arwade S, Wawrzynek PA. Simulation of Grain Boundary Decohesion and Crack Initiation in A luminum M icrostructure M odels. Fatigue and Fracture Mechanics: 33rd Volume, In ASTM STP 1417, W.G. Reuter and R.S. Piascik, Eds., A merican Society for Testing and M aterials, W est Conshohocken, PA, 715-728, 2002.
16. Ural A, Zehnder A, Ingraffea A R. Fracture mechanics approach to facesheet delamination in honeycomb: measurement of energy release rate of the adhesive bond. Eng. Fract. Mech., 70:93-103, 2002.
17. Riddell WT, Ingraffea AR, Wawrzynek PA. Propagation of non-planar fatigue cracks: experimental observations and numerical simulations. In 33rd National Symposium on F atigue and Fracture M echanics; M oran, WY ; USA ; 25-29 J une 2001. pp. 573-597. 2002
18. Chew P, Chrisochoides N, Gopalsamy S, H eber G, Ingraffea A R, Luke E, Neto J, Pingali K, Shih A, Soni B, Stodghill P, Thompson D, V avasis S, Wawrzynek P. Computational science simulations based on web services. Lect. Notes C omput. Sci., 2660:299-308 2003.
19. Hwang CG, Ingraffea AR. Shape prediction and stability analysis of Mode-I planar cracks. Eng. Fract. M ech., 71:1751-1777, 2004.
20. Hanson JH, Bittencourt TN, Ingraffea A R. Three-dimensional influence coefficient method for cohesive crack simulations. Eng. Fract. M ech., 71:2109-2124, 2004.
21. Ural A, Heber G, Wawrzynek PA, Ingraffea A R, Lewicki DG, Cavalcante-N eto JB. Threedimensional, Parallel, Finite Element Simulation of Fatigue Crack Growth in a Spiral Bevel Pinion Gear. Eng. Fract. M ech., 72:1148-1170, 2005.
22. Hwang CG, Wawrzynek PA, Ingraffea AR. On the calculation of derivatives of stress intensity factors for multiple cracks, Eng. F ract. M ech., 72, 1171-1196, 2005.
23. Banks-Sills L, Hershkovitz I, Wawrzynek PA, Eliasi R, Ingraffea AR. M ethods for Calculating Stress Intensity Factors in A nisotropic M aterials: Part I-z=0 is a Symmetric Plane, Eng. Fract. M ech., 72:2328-2358, 2005.
24. Caval cante-N eto J B.; M artha LF, Wawrzynek PA, Ingraffea A R. A B ack-tracking procedure for Optimization of simplex meshes, Comm. Numer. M ethods Eng., 21:711-722, 2005.
25. Banks-Sills L, Hershkovitz I, Wawrzynek PA, Eliasi R, Ingraffea AR. M ethods for calculating stress intensity factors in anisotropic materials: Part II-A rbitrary geometry, Eng. F ract. M ech., 74:1293-1307, 2007.
26. H wang CG, Ingraffea A R. V irtual crack extension method for calculating the second order derivatives of energy release rates for multiply cracked systems. Eng. Fract. M ech., 74:14681487, 2007.
27. M iranda A, M artha L, Wawrzynek PA, Ingraffea A R. Surface mesh regeneration considering curvatures, Eng Comp, 25:207-219, 2, 2009
28. Coffman V, Sethna J, Heber G, Liu A, Ingraffea A R, B ailey N, Barker E. A Comparison of Finite Element and A tomistic M odeling of Fracture. M odel Sim M at Sci Eng. 16, 6, 1 September 2008, A rticle number 065008.
29. E mery J, H ochhalter J, Wawrzynek P, Ingraffea A R. DDSim: A hierarchical, probabilistic, multiscale damage and durability simulation methodology - Part I: methodology and Level I. Eng. Fract. M ech., 76:1500-1530, 2009.
30. JE Bozek, JD Hochhalter, M G Veilleux, M Liu, G Heber, SD Sintay, AD Rollett, DJ Littlewood, AM M aniatty, H W eiland, RJ ChristJr., J Payne, G Welsh, DG Harlow, PA Wawrzynek, AR Ingraffea A Geometric A pproach to M odeling M icrostructurally Small Fatigue Crack Formation- Part I: Probabilistic Simulation of Constituent Particle Cracking in AA 7075-T651. M odel Sim M at Sci Eng, 16, 6, 1 September 2008, A rticle number 065007.
31. Hochhalter J, Littlewood D, Veilleux M, Bozek J, Ingraffea A R, M aniatty A. A geometric approach to modeling microstructurally small fatigue crack formation: II. Simulation and prediction of crack nucleation in A A 7075-T651. M odel Sim M at Sci Eng, accepted for publication, 2009.
32. Coffman V , Sethna J, Ingraffea A R, B ailey N , Iesulauro E, Bozek J. Challenges in Continuum M odeling of Intergranular Fracture. Strain, accepted for publication, February, 2010.

7.0 LIST OF ALL OTHER CASES DURING THE PREVIOUS 4 YEARS IN WHICH THE WITNESS TESTIFIED AT DEPOSITION OR TRIAL None

8.0 COMPENSATION

The hourly compensation rate of A.R. Ingraffea Ph.D., P.E. to date has been $\$ 400 /$ hour.

APPENDIX B - FLOOR COLLAPSE ANALYSIS REPORT

WORLD TRADE CENTER 7
 COLLAPSE INVESTIGATION
 New York NY

Prepared for
Gennet, Kallmann, Antin \&t Robinson PC and
Greenbaum, Rowe, Smith \&t Davis LLP

12 February 2010

By
Guy Nordenson PE, SE

TABLE OF CONTENTS

B1.0	INTRODUCTION	B1
B1.1	Description of Progressive Floor Collapse	B1
B1.2	Description of Floor Collapse Analysis Approach B1 B2.0 FLOOR COLLAPSE ASSUMED GEOMETRY	
B2.1	SAP2000 Single Floor Model Analysis	B4
B2.2	Idealized Collapse Geometry	B4
		B7

B3.0 FLOOR COLLAPSE ENERGY DISSIPATION B11
B3.1 Identification of Failure Modes and Energies B11
B3.2 Composite Slab Tensile Fracture B12
B3.3 Composite Slab Shear Fracture B18
$\begin{array}{lll}\text { B3.4 Rotational Deformation at Slab Boundaries } & \text { B20 }\end{array}$
B3.5 Rotational Deformation at Slab Failure Yield Lines B24
B3.6 Falling Girder Plastic Deformation at Impact B26

B4.0 FLOOR COLLAPSE POTENTIAL ENERGY B28
B4.1 SAP2000 Single Floor Model Analysis B28
B4.2 Equivalent Collapsed Floor Section Geometry B29
B4.3 Equivalent Collapsed Floor Section Potential Energy B29

B5.0 FLOOR IMPACT AND FAILURE B30
B5.1 Girder Impact Location B30
B5.2 Girder Stiffness at Impact Location B32
B5.3 Impact Force Transmission to Column Connections B33
B5.4 Connection Failure \quad B34

B6.0 VERTICAL COLLAPSE PROPAGATION B36
B6.1 Propagation Analysis Assumptions B36
B6.2 Floor 13 to Ground Floor Collapse Propagation B37
B7.0 CONCLUSIONS B39
B8.0 MOMENT ROTATION CURVES AND HINGE ENERGIES B40

JA-4065

B1.0
 INTRODUCTION

This report summarizes the engineering analysis and the findings of Guy Nordenson PE SE regarding the vertical progression of partial floor slab collapse at the northeast corner of WTC7 following the initiating event of Girder 44-79 becoming unseated at Column 79 on Floor 13, one of two collapse initiation theories documented in the report by Dr Colin Bailey (Ref 7).

B1.1 Description of Progressive Floor Collapse

Upon failure of Girder 44-79's connection to Column 79 on Floor 13, the southern end of the girder is unseated and falls toward Floor 12. As it falls, the composite beams framing into the girder as well as a portion of the concrete slab are also pulled down, and the collapsing partial floor section impacts Floor 12 below.

Using principles of energy conservation, it was determined that the impact energy of Floor 13 falling on Floor 12 is sufficient to fail the floor, causing the propagation of floor collapse on lower floor levels. Using the same methodology, it was determined that the propagation of the floor collapse on lower levels could not be arrested, even on Floors 5 and 7, which are thicker and more highly reinforced than the typical floors. The analysis methods outlined in the following section demonstrate that the failure of the Girder 44-79 connection to Column 79 on Floor 13 initiated a sequence of partial floor collapses that propagated until reaching the base of the structure.

B1.2 Description of Floor Collapse Analysis Approach

The basis for the analysis was an energy comparison between the remaining potential energy of a floor slab once it has deformed and broken away from its surrounding slab versus the energy required to fail the support structure of the floor below as follows:

$$
\left(\binom{\text { Potential Energy of }}{\text { Falling Floor Slab }}-\binom{\text { Energy Dissipated }}{\text { in Failure of Floor }}\right) \text { VS }\left(\begin{array}{l}
\text { Energy Required to Fail } \\
\text { Girder Connection to } \\
\text { Column at Floor Below }
\end{array}\right)
$$

A conservative approach to the analysis was taken in which the energy comparison was made on a relative floor-to-floor basis without allowing the potential energy of falling floor areas to accumulate. For example, once it was determined that Floor 12 would fail as a result of the impact of Floor 13, both the remaining potential energy of Floor 13 and its new potential energy due to its mass falling from Floor 12 to 11 were set to zero, and only the new potential energy of Floor 12 falling to Floor 11 was included in the next energy comparison at Floor 11 to assess whether the collapse would propagate further (Figure B1.1).

Guy Nordenson and Associates

While the study was based of necessity upon assumptions about geometry and deformation characteristics of the falling floors, a conservative approach was taken to establish a lower bound potential energy and an upper bound deformation energy, thereby producing the lowest possible shear force transferred to the girder-to-column connection at each level.

ETC, TO GROUND

Figure B1.1 Conservative methodology for floor collapse assessment

As the basis for determining both the potential energy of the falling floor and the amount of energy dissipated in its failure, a structural analysis model was generated in SAP2000 Advanced Version 12.0.2 by Computers and Structures Inc of Berkeley CA (Ref 17) to assess the likely geometry of each floor as it collapses due to the failure of Girder 44-79 at Column 79.

The potential energy of each falling floor was calculated as the mass of the deformed floor area tributary to the impact point under the deformed geometry condition multiplied by the height over which that mass would fall before impacting the floor below.

The energy dissipated when a floor falls is the energy required to fracture its continuity with the adjacent structure and to inelastically deform the slab. These energies were calculated as the fracture energy associated with rupture of the concrete and steel in

JA-4067

the floor slab and the plastic energy from moment-rotation curves for the floor slab. The sources of energy dissipation are as follows (illustrated in Figure B3.1):

- Tensile fracture of highly deformed bays directly to the south and west of the falling floor area
- Shear and tensile fracture of the floor sections in the immediate vicinity of Column 79
- Plastic hinging of the perimeter of the falling floor area
- Plastic hinging of the borders with the south and west deformed bays (only where trench headers do not eliminate the topping slab continuity)
- Energy dissipation based on the rotational deformation of the falling floor area along hinge lines
- Plastic deformation of falling girder tip at impact with floor below

On floor levels at which the line of slab fracture coincided with the location of a trench header, only the fracture energy of the metal deck and any concrete below the trench header was taken into account.

Subtracting the total dissipated energy from the initial potential energy of the partial floor prior to collapse provided the potential energy of the falling section of Floor 13 at the moment of impact with Floor 12. This potential energy at impact was then converted to an equivalent static force based on the stiffness of the impact location and the resulting girder deflection. The resulting shear force transferred to the connection at Column 79 was then calculated and compared with the expected shear capacity of the connection to determine whether the failure of one floor would cause the failure of the floor below.

This procedure was repeated at each floor level to determine if the partial floor collapse sequence would continue to ground level.

This report details the steps described above as calculated for one typical floor-to-floor stage of the partial floor collapse sequence and includes tables documenting the summary calculations for the full collapse sequence. Additional details of the calculation sequence from Floor 13 to ground can be found in Section B8.0.

This section outlines the modeling and analysis methods used to establish the assumed partial floor collapse geometry on which the subsequent calculations are based.

B2.1 SAP2000 Single Floor Model Analysis

A section of the northeast corner of Level 13 was isolated from the rest of the floor and a single story SAP2000 model of this section was developed. The extents of the partial floor model are shown in Figure B2.1 below. Material properties used in the model were consistent with those noted in Section 3.4 of the main summary report.

Figure B2.1 Level 13 partial floor SAP2000 model extents (geometry consistent with global model at Level 13)

Gravity loads including dead load, superimposed dead load, and live load were applied to the model assuming a sustained gravity load combination of 1.0DL + 1.0SDL + 0.25 LL . The weight of the steel framing was automatically taken into account by SAP2000. The weight of the concrete slab was defined as an area load in accordance with the loading schedule on Sheet S-24 of the structural drawings.

The typical superimposed dead load accounting for ceiling and ductwork, partitions, flooring, and encasement and fireproofing of beams was 25psf based on loading schedule on Sheet S-24 of the structural drawings. Only 25\% of the design live load was taken into account, therefore a load factor of 0.25 was assigned to the typical 50 psf live load area load case. Superimposed dead loads and live loads for typical floors were assigned according to the loading schedule on Sheet S-24 of the structural drawings.

The SAP2000 model was intended to provide insight into the locations and modes of element failures preceding floor collapse; it was not intended to recreate the full floor collapse sequence but rather to suggest a probable collapse mechanism that could be accounted for with simple spreadsheets and hand calculations. To simulate connection failure at Column 79 in the model, Girder 44-79 was disconnected from Column 79 and supported by a soft spring.

The resulting slab stresses and deformation characteristics were then studied and utilized to develop a simplified geometrical representation of the partial floor failure that allowed deformation energies to be calculated based on the probable failure pattern suggested by the results of the SAP2000 model.

Figure B2.2 Undeformed SAP2000 model with Girder 44-79 connected to Column 79

The idealized deformed geometry of the failed floor slab section was assumed to apply to Floor 13 through Floor 2. Though some intermediate floors such as Floor 6 and Floor 3 had different slab opening configurations, the overall geometry of the isolated floor section was sufficiently similar for the idealized deformation geometry configuration to hold.

JA-4070

Guy Nordenson and Associates

Figure B2.3 Deformed SAP2000 model under gravity loads with disconnected girder (4x amplified elastic deformation)

Figure B2.4 Deformed SAP2000 model under gravity loads with disconnected girder (4x amplified elastic deformation) (Note: effect of trench header at south bay not accounted for in approximated deformations)

Figure B2.5 SAP2000 Model under gravity loads with disconnected girder (4x amplified elastic deformation; west slab sections removed from view for clarity) (Note: effect of trench header at south bay not accounted for in approximated deformations)

B2.2 Idealized Collapse Geometry

As shown in Figures B2.3 and B2.4, the unseating of Girder 44-79 from Column 79 caused the south end of the girder to fall, and the girder rotated about its intact connection at Column 44. The composite east-west beams framing into Girder 44-79 were forced to rotate at their connections to the east perimeter framing as they were pulled down with Girder 44-79.

Because the slab on metal deck was connected to the composite beams and girder via shear studs (see Section 3.5.1 of the main summary report), the slab was assumed to take on the faceted deformed shape imposed upon it by the surrounding steel floor framing members.

JA-4072

Figure B2.6 Level 13 partial floor extents of idealized geometry model

Based on Figure B2.6 above, the section of Floor 13 affected by the unseating of Girder 44-79 was isolated and the deformation geometry idealized in order to allow for the calculation of deformation values and corresponding energy dissipation at discrete points. The extents of the isolated idealized geometry model are shown in Figure B2.7 below.

Figure B2.7 Undeformed idealized geometry model extents

JA-4073

Figure B 2.8 below depicts the idealized geometry of the Girder 44-79 rotation about its connection to Column 44. In addition to establishing the idealized deformation geometry, this girder rotation diagram served as the basis for determining the girder impact location at the level below. Girder impact is discussed in greater detail in Section B5.1.

Figure B2.8 Girder 44-79 simplified rotation diagram
Assuming that the beams connected to Girder 44-79 also rotated about their perimeter connections, the idealized deformed geometry model depicted in Figures B2.9 and B2.10 was developed. As these figures illustrate, the idealized deformation geometry accounts for the fact that the free end of Girder 44-79 would have been pulled slightly toward the east perimeter as well as toward the north perimeter as it fell.

For the determination of idealized deformation geometry, framing members were conservatively assumed to rotate about the column centerlines.

As shown in Figures B2.9 and B2.10, the idealized deformation geometry for the collapsed floor section was developed using straight line segments to represent Girder 44-79 as well as the attached east-west composite members. The wind girders on the north and east perimeters were assumed to remain intact and undeformed.

Figure B2.9 Projected plan of idealized deformation geometry (blue represents undeformed geometry, red represents deformed geometry)

At this stage of the analysis, the slab geometry was assumed to remain flat, or undeformed, between each straight line beam segment and then kink at each slab-beam intersection. Subsequent refinements were made to this geometry assumption to more accurately represent and analyze the hyperbolic paraboloid-like shape of the main deformed floor section.

Figure B2.10 Perspective of idealized deformation geometry (blue represents undeformed geometry, red represents deformed geometry)

JA-4075

Because the energy dissipation is closely related to the idealized deformed geometry described in the preceding sections, the modes and values of energy dissipation will be discussed before the potential energy calculations are described. A number of element deformations were required to take place in order for Girder 44-79 and the attached floor system to collapse and impact the level below in the manner illustrated with the idealized deformed geometry SAP2000 model. Each of these element deformations is a source of potential energy dissipation that must be accounted for in order to determine the reduced energy of the falling floor system at the moment of impact.

B3.1 Identification of Failure Modes and Energies

Five idealized modes of energy dissipation were analyzed based on the deformed floor system geometry in Figures B2.9 and B2.10. The locations at which these modes of energy dissipation occur are highlighted in the diagram below.

Figure B3.1 Energy dissipation modes accounted for in analysis

WTC7 Global Collapse Analysis - Appendix B
Floor Collapse Analysis Report
Page B11
12 February 2010

JA-4076

The dashed green line represents failure due to tensile fracture across the highly deformed bays of composite slab. The red lines represent slab rotations along boundary lines at which significant angle changes occurred. As most floor levels from Floor 13 to ground had a full-topping-depth trench header along the south perimeter of the isolated slab section, only tensile fracture of the reduced slab section without additional rotational deformations was accounted for at these floors. The orange lines represent shear fracture failure of the short slab segments that connected the highly deformed bays to Column 79. The blue circle represents the plastic deformation of the falling girder upon impact with the floor below.

The fourth source of energy dissipation accounted for in this study is rotational deformation across the main section of collapsed floor along idealized slab hinge lines corresponding to the hyperbolic paraboloid-like shape of the failed floor slab section.

B3.2 Composite Slab Tensile Fracture

Though some shearing would have occurred as the composite slab highlighted in Figure B3.2 was forced to assume its deformed shape, the deformation shown in Figure B2.4 of the previous section suggests that the primary force the deformed slab bays would have experienced was tension.

Figure B3.2 "Tensile Fractured" composite slab bays

WTC7 Global Collapse Analysis - Appendix B
Floor Collapse Analysis Report
Page B12
12 February 2010

As documented in the Table B3.1 below, the composite slab at Floor 13 consisted of 2.5 " concrete on $3^{\prime \prime}$ metal deck. The profile of the metal deck was based on the standard dimensions provided by the Steel Deck Institute as shown in Figure B3.3. The concrete was reinforced with 6x6 W1.4xW1.4 WWF per the structural construction documents.

Table B3.1 Floor slab properties based upon structural construction documents (top cover assumed 0.75 " when not specified in drawings)

Floor	Direction	Slab Depth	Centroid from Bott [in]	Mom of Inertia [in4]	Deck Gauge	Deck Thickness [in]
8-13	Major Minor Angle	$\begin{gathered} 2.5 \text { " on } 3 " \\ \text { " " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 3.2578 \\ 1.25 \end{gathered}$ use major	$\begin{gathered} 107.7 \\ 15.625 \end{gathered}$ use major	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0359 \\ & 0.0359 \end{aligned}$
$\begin{aligned} & 7 \text { (metal } \\ & \text { deck) } \end{aligned}$	Major Minor Angle	$\begin{gathered} 5 \text { " on } 3 " \\ " \text { " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 4.601 \\ 2.5 \end{gathered}$ use major	$\begin{gathered} 348.5 \\ 125 \end{gathered}$ use major	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0474 \\ & 0.0474 \\ & 0.0474 \\ & \hline \end{aligned}$
$7 \quad(8 "$ thick slab)	Both	8" slab	4	512	-	-
6	Major Minor Angle	$\begin{gathered} 3 " \text { on } 3 " \\ \text { " " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 3.5347 \\ 1.5 \end{gathered}$ use major	$\begin{gathered} 140.9 \\ 27 \\ \text { use major } \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0359 \\ & 0.0359 \\ & \hline \end{aligned}$
5	Major Minor Angle	$\begin{gathered} 11 \text { " on } 3 \text { " } \\ \text { " " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 7.6725 \\ 5.5 \end{gathered}$ use major	$\begin{gathered} 2097.5 \\ 1331 \end{gathered}$ use major	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0474 \\ & 0.0474 \\ & 0.0474 \\ & \hline \end{aligned}$
4	Major Minor Angle	$\begin{gathered} 3 " \text { on } 3 " \\ \text { " " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 3.5347 \\ 1.5 \end{gathered}$ use major	140.9 27 use major	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0359 \\ & 0.0359 \\ & \hline \end{aligned}$
3	Major Minor Angle	$\begin{gathered} 3 " \text { on } 3 " \\ \text { " " } \\ \text { " " } \end{gathered}$	3.5347 1.5 use major	140.9 27 use major	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0359 \\ & 0.0359 \\ & \hline \end{aligned}$
2	Major Minor Angle	$\begin{gathered} 3 " \text { on } 3 " \\ \text { " " } \\ \text { " " } \end{gathered}$	$\begin{gathered} 3.5347 \\ 1.5 \end{gathered}$ use major	140.9 27 use major	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0359 \\ & 0.0359 \\ & 0.0359 \\ & \hline \end{aligned}$

Table B3.1 cont Floor slab properties (assume $0.75^{\prime \prime}$ top cover if not specified in dwgs)

Floor	Direction	Top Slab Reinf Each Way [in2/ft]	Bott Slab Reinf Each Way [in2/ft]	Added Reinf Perp to Spandrels [in2/ft]	Top Cover [in]
8-13	Major Minor Angle	$\begin{gathered} 0.028 \text { (WWF) } \\ 0.028 \text { (WWF) } \\ 0.040 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \text { (\#4@12) } \\ & 0.2 \text { (\#4@12) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$
7 (metal deck)	Major Minor Angle	$\begin{gathered} 0.31 \text { (\#5@12) } \\ 0.31 \text { (\#5@12) } \\ 0.438 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2(\# 4 @ 12) \\ & 0.2(\# 4 @ 12) \end{aligned}$	$\begin{aligned} & 0.75^{*} \\ & 0.75^{*} \\ & 0.75^{*} \\ & \hline \end{aligned}$
$\begin{array}{cc} 7 & \left(8^{\prime \prime}\right. \\ \text { thick slab) } \end{array}$	Both	0.72 (\#7@10)	0.372 (\#5@10)	-	0.75*
6	Major Minor Angle	$\begin{gathered} 0.028 \text { (WWF) } \\ 0.028 \text { (WWF) } \\ 0.040 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \text { (\#4@12) } \\ & 0.2 \text { (\#4@12) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$
5	Major Minor Angle	$\begin{gathered} 0.6 \text { (\#7@12) } \\ 0.6 \text { (\#7@12) } \\ 0.849 \end{gathered}$			$\begin{aligned} & 0.75^{*} \\ & 0.75^{*} \\ & 0.75^{*} \\ & \hline \end{aligned}$
4	Major Minor Angle	$\begin{gathered} 0.028 \text { (WWF) } \\ 0.028 \text { (WWF) } \\ 0.040 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \text { (\#4@12) } \\ & 0.2(\# 4 @ 12) \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$
3	Major Minor Angle	$\begin{gathered} 0.028 \text { (WWF) } \\ 0.028 \text { (WWF) } \\ 0.040 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \text { (\#4@12) } \\ & 0.2 \text { (\#4@12) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$
2	Major Minor Angle	$\begin{gathered} 0.028 \text { (WWF) } \\ 0.028 \text { (WWF) } \\ 0.040 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \text { (\#4@12) } \\ & 0.2 \text { (\#4@12) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$

The corrugation of the metal deck was parallel to the tensile fracture across the full extent of both "tensile fractured" bays. As noted above, the location of trench headers along the south edge of the isolated slab section on most floor levels reduced the energy required to fracture the section along these trench header lines due to the discontinuity of the concrete fill and wire mesh reinforcement.

JA-4079

Figure B3.3 Metal deck profile diagram from the Steel Deck Institute

In order to calculate the tensile fracture energy dissipated across the full "tensile fractured" bays, the bays were discretized into a series of 1 ft -wide strips spanning from the stationary beam at the south and west edges of the isolated floor section to the deformed beam one bay to the north of the south failed slab section perimeter and to Girder 44-79, respectively. These strips are shown in Figures B3.4 and B3.5.

While the failure of the partial floor slab section may not have fractured along the full lengths of the south and west failed slab section perimeters, it was conservative to assume the fracture occurred across the full length of the perimeters lines in order to account for the maximum possible amount of energy dissipation.

Based on the specific tensile fracture energy values for concrete, metal deck, and wire mesh, the maximum energy dissipation per unit width of slab can be determined for each of the three composite slab components by calculating how much energy is required to fracture each of the composite slab materials. For the purposes of this study, the fracture energy of concrete (Gf) was taken as $4 \times 10^{-4} \mathrm{kip-in} / \mathrm{in}^{2}$ and the fracture energy of metal deck, wire mesh, and steel reinforcing bars (Gc) was taken as 0.5 kip-in/in² (Refs 6 and 10).

Guy Nordenson and Associates

Figure B3.4 Tensile fractured slab section strips plan view

At Floor 13, each 1 ft -wide section of composite slab consists of $48 \mathrm{in}^{2}$ of concrete, $0.572 \mathrm{in}^{2}$ of metal deck, and $0.028 \mathrm{in}^{2}$ of wire mesh. Based on the fracture energies noted above, each strip of slab is therefore capable of dissipating energy equal to:

$$
\begin{aligned}
& \left(48 \mathrm{in}^{2} \times 4 \times 10^{-4} \mathrm{kip}-\mathrm{in} / \mathrm{in}^{2}\right) \\
+ & \left(0.572 \mathrm{in}^{2} \times 0.5 \mathrm{kip}-\mathrm{in} / \mathrm{in}^{2}\right) \\
+ & \left(0.028 \mathrm{in}^{2} \times 0.5 \mathrm{kip}-\mathrm{in} / \mathrm{in}^{2}\right) \\
= & 0.3 \mathrm{kip}-\mathrm{in}
\end{aligned}
$$

By definition of the specific fracture energies, this cumulative energy in the above calculation represents the full amount required to take the slab section from an unstressed state to failure.

Guy Nordenson and Associates

Table B3.2 Shear fracture calculations

		Fracture Length (ft)	Conc Area (in2/ft)	Metal Deck Area (in2/ft)	Wire Mesh or Reinf Area (in2/ft)	Concrete Gf (k- in/in2)	Metal Deck Gc (k- in/in2)	Wire Mesh and Reinf Gc (k- in/in2)	Concrete Energy (kip-in)	Metal Deck Energy (kip- in)	Wire Mesh Energy (kip- in)
13 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	Total Energy (kip- in)
13 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.4		
12 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	14.4
12 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.5	-	15.5
11 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	14.4
11 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.5	-	15.5
10 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	14.4
10 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.5	-	15.5
9 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	14.4
9 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.5	-	15.5
8 West	45	48	0.5728	0.028	0.0004	0.5	0.5	0.864	12.9	0.6	14.4
8 South	54	-	0.5728	-	0.0004	0.5	0.5	-	15.5	-	15.5
7 West	45	48	0.7584	0.31	0.0004	0.5	0.5	0.864	17.1	7.0	24.9
7 South	54	54	0.7584	0.31	0.0004	0.5	0.5	1.1664	20.5	8.4	30.0
6 West	45	78	0.5728	0.028	0.0004	0.5	0.5	1.404	12.9	0.6	14.9
6 South	-	-	-	-	0.0004	0.5	0.5	-	-	-	-
5 West	45	150	0.7584	1.2	0.0004	0.5	0.5	2.7	17.1	27.0	46.8
5 South	54	150	0.7584	1.2	0.0004	0.5	0.5	3.24	20.5	32.4	56.1
4 West	45	54	0.5728	0.028	0.0004	0.5	0.5	0.972	12.9	0.6	14.5
4 South	54	54	0.5728	0.028	0.0004	0.5	0.5	1.1664	15.5	0.8	17.4
3 West	45	54	0.5728	0.028	0.0004	0.5	0.5	0.972	12.9	0.6	14.5
3 South	54	54	0.5728	0.028	0.0004	0.5	0.5	1.1664	15.5	0.8	17.4

WTC7 Global Collapse Analysis - Appendix B
Floor Collapse Analysis Report 12 February 2010

Figure B3.5 Tensile fractured slab section strips perspective view

Based on the method outlined above, the total energy dissipated through the southern bay tensile fracture of Floor 13 was found to be 16 kip-inches. The total energy dissipated through the western bay tensile fracture of Floor 13 was found to be 15 kipinches. The tensile fracture calculations for Floors 13 through 2 are shown in Table B3.2 above.

B3.3 Composite Slab Shear Fracture

Principles of fracture mechanics used to calculate the tensile fracture energy of the southern and western slab sections were also used to calculate the energy dissipated due to combined shear and tensile fracture of the short slab segments that link the southern and western bays to Column 79 (See Figure B3.6 below)

JA-4083

Guy Nordenson and Associates

Figure B3.6 Shear/tensile fractured slab boundaries

Both of the boundary edges highlighted in Figure B3.6 were required to fail in order for the floor section to assume the idealized deformed shape. While the concrete portion of the composite slab failed in combined shear/tension mode along these boundary lines, because the specific fracture energy of concrete in shear is significantly greater than in tension it was conservatively assumed that the concrete failed in pure shear fracture mode. The metal deck and slab reinforcing steel were assumed to have failed in tensile fracture mode as they tried to resist the angled pull of the failing floor section.

Assuming maximum slab depth parallel to the flutes of the deck taken over the full length of both boundaries, the cross sectional slab area as well as the area of the metal deck and reinforcing steel were calculated. The material-specific fracture energy values were then applied to these cross sectional areas to determine the energy required to fail the slab boundaries. At Floor 13, fracture of the western boundary of the south bay dissipated 6 kip-inches of energy while fracture of the southern boundary of the west bay dissipated 8 kip-inches of energy, using a constant maximum
slab depth of 5.5 in across the full length. Shear fracture calculations for Floors 13 through 2 are shown in Table B3.3 below.

Table B3.3 Shear fracture calculations

	Max Slab Depth (in)	MtI Deck Thck (in)	Reinf Area (in2/in)	Shear Length S (in)	Shear Length W (in)	Slab G2c (k- in/in2)	MtI Deck Gc (k- in/in2)	Reinf Gc (kip- in/in2)	Shear S Fracthre Energy (k-in)	Shear Length W Fracture Energy (k-in)	Total Shear Fracture Energy (k-in)
13	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
12	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
11	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
10	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
9	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
8	5	0.0359	0.0023	84	122	0.008	0.5	0.5	5.6	8.1	13.7
7	8	0.0474	0.0258	84	118	0.008	0.5	0.5	9.2	13.0	22.2
6	6	0.0359	0.0023	84	115	0.008	0.5	0.5	6.2	8.5	14.8
5	14	0.0474	0.0500	83	110	0.008	0.5	0.5	14.1	18.7	32.8
4	6	0.0359	0.0023	83	110	0.008	0.5	0.5	6.2	8.2	14.3
3	6	0.0359	0.0023	118	-	0.008	0.5	0.5	8.8	-	8.8
2	6	0.0359	0.0023	-	-	0.008	0.5	0.5	-	-	-

B3.4
Rotational Deformation at Slab Boundaries

In addition to tensile and shear fracture at the southern and western bays of the failed floor section, the idealized deformation geometry also required the slab to bend, or rotate, along boundary lines defined by the straight line deformation geometry. The locations at which the floor section boundaries must rotate in order to assume the deformed shape are highlighted in Figure B3.7 below.

In order to calculate the energy dissipated due to the slab rotations along these boundaries, plastic moment-rotation curves were developed for each boundary slab at each floor level based on the slab properties and orientation. As with the fracture calculations, the slab boundaries were divided into 1 foot segments to allow the hinge properties to be calculated for typical 1 foot widths of slab.

Figure B3.7 Slab boundary rotational deformation

Plastic moment-rotation curves were developed using the material properties for concrete, metal deck, and reinforcing steel noted in Section 3.4 of the main summary report. As the development of moment-rotation curves requires strain compatibility across the section, ultimate strain values of 0.15 for metal deck and reinforcing steel and 0.004 (a conservative value, assuming partial confinement) for concrete were used in this portion of the analysis.

All but two of the slab boundary edges highlighted in Figure B3.7 experienced negative bending (ie top of slab in tension) when the failed slab section took on the deformed shape. The boundary lines along Girder 44-79 and along the beam that frames into the southern end of Girder 44-79 experienced positive bending (ie bottom of slab in tension) when the floor section deformed. As previously noted, the southern boundary energies were typically not included in the energy calculations due to the existence of full-depth trench headers at this location. Where trench headers were not present, the boundary deformation energy was accounted for.

Guy Nordenson and Associates

Figure B3.8 Typical composite slab plastic moment-rotation curve

Plastic moment-rotation curves were developed for the appropriate slab bending direction at each of the boundaries (See Figure B3.8 above) by establishing the three points corresponding to concrete cracking, tensile steel yielding, and the governing condition of steel or concrete reaching maximum strain. Plastic moment-rotation curves for slab sections at Levels 8-13 are shown as Figure B3.9 below and detailed for all other floors in Section B8.0. The configuration of the reinforced concrete slabs on composite metal deck used to generate the curves was obtained from the latest structural construction documents.

A common approximation for the plastic hinge length of depth/2 was used. The area under each moment-rotation curve was calculated, representing the maximum energy dissipated by the rotation of a 1 foot-wide strip of slab. The slab boundaries were conservatively assumed to have undergone full plastic rotation, and therefore dissipated the maximum possible amount of energy, along their entire lengths. Additional reinforcing steel in the slab adjacent to the wind girders was taken into account where applicable according to the latest structural construction documents.

Adding these boundary rotation energy dissipation values together at each floor level produced the total slab boundary rotation energy to be subtracted from the potential energy. The values for each floor level are detailed in the tables in Section 8.0.

Figure B3.9 Levels 8-13 Composite slab plastic moment-rotation curves

JA-4088

B3.5 Rotational Deformation at Slab Failure Yield Lines

Using plastic hinge calculation methods identical to those outlined in the previous section, the rotational deformation energy associated with the supported slab section were calculated. As noted in Section B2.2 of this report, the failed floor section distorts into roughly a hyperbolic paraboloid-like shape as it remains supported on the north and east edges while losing support at the south and west edges. This deformed shape is described in Figures B3.10 and B3.11 below.

Figure B3.10 Perspective view of floor deformation hinge strips

Figure B3.11 Alternate perspective view of floor deformation hinge strips

While it is unlikely that the failed slab section distorted into the exact configuration illustrated in the above figures, the boundary support conditions and the single floor SAP2000 analysis model suggest the geometry as a reasonable approximation for the purposes of this analysis. To determine an upper bound value of the energy dissipated by the failed floor section assuming the hyperbolic paraboloid-like shape, it was assumed that full plastic hinges form along the idealized yield lines depicted in Figure B3.12.

Figure B3.12 Projected plan of idealized floor deformation yield lines

As noted in Figure B3.12 above, two plastic hinge lines, one positive bending and one negative bending, were assumed to form when the failed floor section took on its idealized deformed shape. As in the slab boundary rotation energy calculations, for the sake of conservatism it was assumed that full plastic hinges formed over the full length of both slab hinge lines.

Additional plastic moment-rotation curves were developed for these floor deformation hinge lines in order to account for the additional area of reinforcement in diagonal sections of slab. Detailed moment-rotation curve calculations as well as a table noting the total floor deformation energies for Floor 13 through Floor 2 can be found in Section B8.0.

The deformation of the falling Girder 44-79 upon impact with the level below is an additional source of energy dissipation. A simplified, conservative approach was used to calculate the plastic deformation energy associated with the local plastic deformation of the portion of the flange that impacts the slab below. The local deformation boundary was taken at a 45 degree angle along half of the bottom flange of Girder 44-79.

This geometry was assumed based on Figure B3.13 below, depicting the angled impact of Girder 44-79 with the floor below, with the full force of impact concentrated at the outer edge of the bottom flange at the south end of the girder.

Figure B3.13 Girder impact overlap section diagram (north view)

Based on this impact geometry, which was developed using the simplified deformed geometry previously discussed and the girder impact overlap calculations detailed in the following sections, Figure B3.14 below was developed and used to calculate the energy associated with plastic deformation of a section of flange for Girder 44-79 at all floor levels from Floor 13 to 3.

Figure B3.14 Assumed girder plastic hinging at impact (section and plan)

At Floors 8-13 where a partial-depth, full-width bearing stiffener plate was installed at the south end of Girder 44-79, the plastic hinge was assumed to extend through the full height and thickness of one plate. At these floors, the dissipated energy associated with plastic deformation of the girder flange upon impact is 82 kip-inches. The values for all remaining floor levels can be found in Table B6.1 in Section B6.2.

This falling girder plastic deformation at impact energy is the final source of energy dissipation accounted for in this analysis. When combined with the previously described sources of energy loss at each floor level, the total energy dissipation value to be subtracted from the partial floor slab section potential energy was determined.

The following sections outline the calculation methods used to determine the potential energy of the falling floor section at each level. This potential energy established the energy total from which the deformation energy was subtracted in order to determine the energy remaining when the falling floor impacts the level below.

B4.1 SAP2000 Single Floor Model Analysis

In order to calculate the potential energy of the tributary floor weight that impacts Floor 12 upon the partial collapse of Floor 13, a partial floor SAP2000 model was used to find the gravity load reaction at the south end of Girder 44-79 where the connection becomes unseated. Column 79 was removed from the model and a roller support was inserted in its place. The gravity load reaction at the former location of Column 79 under the 1.0DL + 1.0SDL + 0.25LL load combination was found to be 46 kips at Floors 13 through Floor 8.

This reaction varies at lower floor levels as the slab configuration, superimposed dead load, and live loads values differ. These different gravity load reactions were calculated at each floor level using additional SAP2000 partial floor models with loading, framing, and slab configurations in accordance with the structural drawings.

Figure B4.1 Partial floor SAP2000 potential energy model (northwest view)

B4.2 Equivalent Collapsed Floor Section Geometry

Based on the idealized deformed geometry, it was assumed that the failed floor deformed approximately along the NW-SE slab strip failure lines shown in Figure B3.12. Using these failure lines as a geometrical guide, the floor area in Figure B4.2 was determined to have the equivalent 46 kip total load as the corner reaction found in the SAP2000 model described in Section B4.1.

Figure B4.2 Tributary equivalent floor system area along hinge lines

Using the idealized deformed geometry, the centroid of the triangular floor area was traced from its initial position to the height at which it comes to rest when Girder 44-79 rotates and impacts the floor below. The change in height of the tributary equivalent area floor was found to be 83 inches on typical Floors 13 through 8. The calculated fall heights for additional levels are noted in Section B12.0.

In terms of potential energy, the portion of floor not included in the failed floor section was assumed to remain intact around the north and east perimeters of the floor section.

B4.3 Equivalent Collapsed Floor Section Potential Energy

Based on the weight of the floor system and the distance over which the centroid of the equivalent floor area fell before impact, the potential energy of the slab impact was determined.

Multiplying 46 kips by a height of 83 inches produces an initial potential energy of 3818 kip-inches. This is the balance of energy from which all deformation and failure energies were subtracted at each of the typical floor levels. Potential energy values for all other floors are noted in Table B6.1 in Section B6.2.

The following section outlines the calculations performed to convert the floor system energy at impact to an equivalent force at the face of Column 79. This equivalent static force was then compared to the shear capacity of the girder-to-column connection or connections to determine if the impact energy was sufficient to cause connection, and therefore floor, failure.

B5.1 Girder Impact Location

Using the idealized deformation geometry illustrated again in Figure B5.1 below, the point at which the falling Girder 44-79 impacted Girder 44-79 at the level below can be determined. Girder 44-79, along with the attached failed floor section, is assumed to have rotated about Girder 44-79's intact connection to Column 44 until the girder impacted the floor below. The rotating girder is assumed to have remained straight on all floors but Floor 13 where thermal deformation due to the fire was approximated. Using the rotated configuration below, the girder impact location was determined.

Figure B5.1 Girder 44-79 Simplified Rotation Diagram

As noted in Section B3.2 of this report, the idealized failed floor section geometry takes the eastward rotation of the falling Girder 44-79 into consideration. Using the same geometrical assumptions outlined above it was determined that a portion of the falling Girder 44-79 flange would overlap with a portion of the Girder 44-79 flange below upon impact, as illustrated in Figures B5.2 and B5.3. Therefore, the calculations included no reduction in impact stiffness due to the slight offset. These calculations are detailed in Table B5.1 below.

Figure B5.2 Girder 44-79 Impact Overlap Plan Diagram (position of intact girder below show in blue; position of rotated girder at impact shown in red)

Table B5.1 Girder impact overlap geometry

	Flr-to- Flr Height (to below) (in)	Girder 44-79 length (in)	Girder $44-79$ depth (in)	Girder 44-79 I (in4)	Girder $44-79$ bf (in)	Overall Slab Depth (in)	E-W Beam Length (in)	Girder Impact Location - East (in)	Girder Flange Overlap at Impact Below?	Girder Stiffness at Impact* (k-in)
13	153	547	33.1	6710	11.5	5.5	644	10	YES	-
12	153	547	33.1	6710	11.5	5.5	644	10	YES	$139^{* *}$
11	153	547	33.1	6710	11.5	5.5	644	10	YES	7627
10	153	547	33.1	6710	11.5	5.5	644	10	YES	7627
9	153	547	33.1	6710	11.5	5.5	644	10	YES	7627
8	155.5	547	33.1	6710	11.5	5.5	644	11	YES	7002
7	157	547	30.4	8230	15	8	644	11	YES	8112
6	164	542	27.4	5660	14	6	645	13	YES	3782
5	163	537	27	14668	16	14	647	12	YES	12708
4	168	537	35.9	15000	16.5	6	647	12	YES	11407
3	169.5	537	36.1	16100	16.5	6	647	13	YES	11759
2	135.5	537	35.6	7800	12	6	-	-	-	19044

* Level 12 impact stiffness reduced to based on assumed 80% span length impact point due to pre-failure girder deformation

Figure B5.3 Girder impact overlap section diagram
For the impact of Floor 13 on Floor 12 only, the impact location was taken as $1 / 5$ the span length away from the face of Column 79 due to the assumed girder deformation that occurs at Floor 13 due to fire before the girder falls. While the girder deformation does not have a significant effect on the impact location, the assumption that the girder impacts Floor 12 's Girder 44-79 at the $1 / 5$ span point is conservative. The assumed geometrical rotation method outlined above is used at all other floor levels.

B5.2 Girder Stiffness at Impact Location

The stiffness of Girder 44-79 at the location of impact was calculated based on the girder geometry, the girder moment of inertia, and the material properties of steel. The girder stiffness was determined using a simple hand calculation assuming a simplysupported span between column centerlines with a point load applied at the calculated point of impact. This boundary condition assumption was conservative as it accounted for the least stiffness possible.

Taking Young's modulus as 29,000 ksi and using the appropriate girder moment of inertia at each floor level, the girder stiffness K at the point of impact along Girder 44-79 just north of Column 79 was found using the following equation:

$$
\mathrm{K}=\frac{3 * \mathrm{E} * \mathrm{I} * \mathrm{~L}}{\left(1 \operatorname{kip} * \mathrm{a}^{2} * \mathrm{~b}^{2}\right)}
$$

Girder impact locations and corresponding stiffnesses for all levels are outlined in Table B5.1 above.

B5.3 Impact Force Transmission to Column Connections

Using the girder impact stiffness values, the impact energy was converted to a static force via deformation using the formula:

$$
P E=\frac{1}{2} K * D^{2}
$$

where D is girder deflection and K is the girder spring stiffness
This equation can be rearranged and solved for deflection. This deflection value can then be multiplied by the girder stiffness to find the equivalent static force using the equation:

$$
F=K * D
$$

Taking K equal to $7627 \mathrm{kips} / i n c h$ yields a static force of 4133 kips . By the geometry established in the girder impact location calculations, the shear distribution of this static force can be determined, allowing the shear force at the face of Column 79 to be calculated.

As shown in Table B5.2, the vertical shear capacity of the seated connection of Girder 44-79 to Column 79 on Floor 13 through Floor 8 was determined to be 632 kips. Expected material properties were considered as defined in AISC/SEI 46-01. No steel strength reduction factors were used in these calculations. The static shear force of 6936 kips as calculated above is far in excess of the connection capacity. Therefore, it is reasonable to conclude that the impact of the partial collapse of Level 13 on Level 12 caused the shear failure of the Girder 44-79 connection.

Connection Failure

Using current AISC-prescribed methodologies and formulas, the expected vertical shear capacity of the Girder 44-79 column connection for the governing failure mode was found at Floors 13 through 2. The typical failure mode was found to be weld shear failure of the seated and knife connections. The typical shear failure value for Floors 13 through 8 was found to be 632 kips .

Expected material strengths listed in Section 3.4 of the main summary report rather than design strengths were used for these calculations in order to give benefit to the structure. Web crippling was checked according to the current edition of AISC and found not to govern the connection failure.

These shear capacity values are noted for all levels in Table B5.2 below. For floors such as Floor 5 at which multiple members frame into the north face of Column 79, all connection shear capacities of members framing into the column were calculated and added together to establish the overall shear capacity at that level. The connection was considered failed after the sum of these capacities was exceeded.

Floor failure was considered to have occurred when the equivalent static shear force as determined using the method specified in the previous sections exceeded the total shear capacity of the girder connection(s) to the north side of Column 79.

Table B5.2 Connection shear capacities

Floor	Conn Type	Vertical Shear Failure Mode	Fexx (ksi)	$\theta 1$ (deg)	Lw1 total (in)	Ww1 (in)	$\theta 2$ (deg)	Lw2 total (in)	Ww2 (in)	$\theta 3$ (deg)	Lw3 total (in)	Ww3 (in)	Rn total (kips)
13	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
12	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
11	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
10	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
9	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
8	Seated	Weld Failure	77	0	28	0.375	90	8.25	0.375	90	9	0.313	632
7	Knife	Weld Failure	77	0	23.5	0.625	0	23.5	0.625	90	1.25	0.313	979
6	Knife	Weld Failure	77	0	17.5	0.625	0	17.5	0.625	90	1.25	0.313	734
5 a	Knife	Weld Failure	77	0	21.5	0.313	0	21.5	0.313	90	1.25	0.313	458
$5 b$	Fin	Weld Failure	77	0	18	0.313	-	-	-	-	-	-	184
4	Knife	Weld Failure	77	0	30	0.438	0	30	0.438	90	1.75	0.438	895
3	Knife	Weld Failure	77	0	21	0.438	0	21	0.438	90	1.75	0.438	638
2^{*}	Knife	Weld Failure	77	0	21	0.438	0	21	0.438	90	1.75	0.438	638

Notes

* Assumed; available shop drawings depict Column 79 prior to Floor 2 addition in NE corner
$R n=0.6 \times$ Fexx $\times\left(1.0+0.5 \sin ^{\wedge} 1.5\right.$ Theta $) \times$ Effective weld area as per AISC Steel Construction Manual Eq J-2
$A w=($ sqrt $2 / 2) \times W w \times L w$
$\mathrm{Lw}=\quad$ Weld length
Ww= Weld throat width
$\theta=\quad$ angle from longitudinal axis of weld
Fexx $=\quad 77 \mathrm{ksi}$ expected for E70 electrodes

6.1 Propagation Analysis Assumptions

As noted in Section B2.2, a conservative approach to the vertical collapse propagation analysis was taken in which the energy comparison was made on a relative floor-tofloor basis without allowing the potential energy of falling floor slabs to accumulate.

For example, once it was determined that Floor 12 would fall as a result of the impact of Floor 13, both the remaining potential energy of Floor 13 and its new potential energy due to its mass falling from Floor 12 to 11 were set to zero, and only the new potential energy of Floor 12 falling to Floor 11 was included in the next energy comparison at Floor 11 to assess whether the collapse propagated farther.

Figure B6.1 Vertical collapse propagation diagram

Floor 13 to Ground Floor Collapse Propagation
As detailed in Section B8, a table of values was developed to compare the equivalent static shear force at the face of Column 79 to the expected connection shear capacity at Floors 13 though 2. When the vertical shear force exceeded the expected vertical shear connection capacity, the partial floor slab section tributary to Girder 44-79 was considered to have failed, and the floor collapse propagated to the next level.

As noted in Sections B2.2 and B6.1 of this report, the accumulation of additional mass that occurred as the partial floor collapse sequence progressed lower was not taken into account in order to maintain a lower bound value of potential energy throughout the analysis, thereby adding an additional degree of conservatism. Thus, the impact energy at each floor level was based solely on the potential energy of the falling partial floor section from one level directly above.

As illustrated in Table B6.1 below, the shear capacities of the Girder 44-79 connections at Column 79 were insufficient to arrest the collapse sequence on all levels from Floor 13 to the ground. Beginning with the impact of Floor 13's Girder 44-79 on Floor 12, the collapsing floor slab section caused the connection failure of Girder 44-79 at the level below. In this way, the partial floor collapse sequence propagated from Floor 13 to the ground.
Guy Nordenson and Associates

\|NTTAL ENEFGr		Energry toss													
Lasel	$\left\{\begin{array}{l}\text { Floor Level } \\ \text { Potential Energy } \\ \left(8 . n_{n}\right)^{\prime}\end{array}\right.$		$\begin{aligned} & \text { West Bay } \\ & \text { Tensile Fracture } \\ & \text { Energy } \mid \text { k-int })^{" 1} \end{aligned}$												Crimer
13	3818	17	14	147	70	14	82	345	3.73	139	394	787	ns	63	
17	3818	17	14	147	70	14	82	345	3473	7627	779	6915	${ }^{3}$	532	FARIURE
11	3818	17	14	147	70	14	82	345	3473	7627	279	6915	vs	632	EAILIRE
10	3818	17	14	147	70	14	82	3.5	3473	7627	729	6915	${ }^{5}$	632	(falure
9	3818	17	14	1.47	70	14	02	345	3473	7002	6976	6266	n	62	Falune
8	3879	17	14	147	71	14	82	345	3535	8112	2573	7194	v_{3}	632	${ }_{\text {Prature }}$
7	5169	3)	25	318	302	23	60	959	1210	3789	${ }^{56} 3$	5331	n	979	${ }^{\text {FAMLIPE }}$
6	4360	-	15	160	105	15	53	348	4012	17708	10988	9593	v	134	Cralum
5	3406	5	47	${ }^{2238}$	1021	33	439	3939	1467	11407	1095	9591	v	1190	IALUPIE
4	8475	17	15	244	105	15	91	488	7987	11759	13706	13220	${ }^{3}$	995	EAMHE
3	726	17	-	168	111	9	${ }_{105}$	410	7217	1904	1679	15750	\square	538	Eature
2	.	.		-	-	-			,	.		-		-	FRAIIRE

[^6]\[

$$
\begin{aligned}
& \text { WTC7 Global Collapse Analysis - Appendix B } \\
& \text { Floor Collapse Analysis Report }
\end{aligned}
$$
\]

B7.0 CONCLUSIONS

Through the use of simplified, conservative hand calculations and basic principles of physics and mechanics, this report demonstrates that the unseating of Girder 44-79 at Floors 13, or at a lower floor in the building, initiates a sequence of partial floor collapses all the way to the ground. The analysis approach undertaken is transparent and straightforward and does not rely on a complex computer analysis that may obscure assumptions inherent to the process. A reasonable lower-bound potential energy was calculated at each floor level. From this minimum initial energy, an upperbound floor failure and deformation energy was subtracted, thereby yielding a conservative impact energy use to assess the failure at each floor level.

JA-4104

B8.0 MOMENT-ROTATION CURVES AND HINGE ENERGIES

The tables on the following pages document the development of the plastic momentrotation curves used to determine the slab boundary and slab deformation energy dissipation values at Floor 13 through Floor 3.

JA-4105

－	－	－	－	－	－	ZNM	10［e｜N｜e3！dkl	วлпебə ${ }^{\text {¢ }}$	Lepunog $75 \times \mathrm{M}$	
－	－	－	－	－	－	Zdm	10［ewn leotdk］			
－	－	690000	$90 \cdot$	900000	$9 \chi^{\prime}$＇	ZNS		әлчебә N		
949100	90°	z20000	90%	t00000	891	2dS	10！ew lealk	$2 \mathrm{Mpl190d}$	Rıepunog ypnos	
\＆¢t000	tht	Ltloo 0	16 己	600000	以0	23	10u！N／1．ppueds	ว»чебә ${ }^{\text {¢ }}$	Repunog $7^{53} \mathrm{~B}$	
LLZ L00	9901	tS0000	81＇2	500000	9でて	ZN	dolein lapueds		Mepuniog caton	
－	－	090000	151	900000	$9 \chi^{\text {čて }}$	2N0		ว＾пебә N		
$9 \angle 9100$	90°	220000	90%	＋00000	891.	2 dO		ว M ［1／50d		

－	－	－	－	－	－	ENM		วヶпебә	Mepunog $75 . \mathrm{m}$	
－	－	－	－	－	－	$\varepsilon \mathrm{d} M$		2 9 P19 150 d		
－		690000	$90 \cdot$	500000	$9 て ゙ て$	ENS	10¢eN leald	ว＾чебә N		
949100	90°	220000	90%	t00000	$89 \cdot$	EdS		2 M 17.150 Cl	kiepunog ypnos	
\＆+6000	thet	Ltloo 0	16 己	60000°	1.0	¢3	10u！N 1F．1pueds	ә＾чебә N	Repunog 7533	
LLZ 100	99.1	t90000	81.2	900000	$9 \chi^{\circ} \mathrm{Z}$	EN		әпчебэ ${ }^{\text {¢ }}$	Mepuniog id． 10 N	
－		090000	151	500000	$9 て ゙ て$	ENO	do！ewn pa｜cur			
9 $\angle 9100$	50%	220000	90%	＋00000	89°	\＆d0		2 Nap 19 SO		

－		690000	$90^{\circ} \mathrm{L}$	90000 0	9で2	TNM	10［eN｜e3idkl	ә»пебэN	kispunog 753 M	
929100	902	z 20000	90%	t0000＇0	89 l	tdM	10［ew leold x_{1}	ว 1 ！ 190 SO		
－	－	690000	901	S00000	9でて	tNS		ә＾पебә		
969600	902	2z0000	90%	＋00000	$89 \cdot$	$t d s$		$2 \mathrm{Ap} \mathrm{P}_{150 \mathrm{C}}$	kuepunog ypnos	
Ettooo	がt	$\angle t+000$	16 Z	600000	120	切	10u！1／N｜apueds	ә＾пебә	Repunog 753	
LLZ 100	9901	＋90000	81． 4	S0000＇0		功	10¢eman｜rupueds	әпчебә	Mepunog Laton	
－		090000	$1 \mathrm{~S}^{1}$	S0000＇0	$9 \chi^{\prime}$ ¢	tNO		ว＾пебә		
9 29100	$90 \cdot 4$	z 20000	50%	$+0000{ }^{\circ}$	89.	$t \mathrm{~d} 0$		ว Al		

$\angle 18000$	$\angle E \angle t$	$\dagger 20000$	999t	200000	0เร	9NM	do［ew｜eo！dkl	әл ¢ебə ${ }^{\text {a }}$	Mepunog753M	$9100 \mid 3$
OtEE00	2662	$60000{ }^{\circ}$	t992	200000	1801	GdM	10［eW｜eoldikl	2 M 11950 d		
LL8000	LELt	$\checkmark 20000$	G95t	200000	0ヶ¢	GNS	10¢ena feold k_{1}	ә» ¢ебる ${ }^{\text {¢ }}$		
$0 \pm ¢ \mathrm{E} 00$	26.62	600000	7992	200000	180	9dS	10［ew［eo！dk］	${ }^{2 \times 4.4500}$	Nepunog yfnos	
906000	00 ¢ ${ }^{\text {¢ }}$	$62000{ }^{\circ}$	＜$¢ 9 \varepsilon$	200000	L9＇6	93		ә＾पебъ	Mepunog 753	
0z9000	\＆て「9	† 20000	Gs ct	200000	0レ＇\llcorner	GN	10！een lapueds	ә＾пебə ${ }^{\text {a }}$	Mepunog Liton	
GZ9000	6ε ¢ 9	L20000	E029	200000	OL ε L	GNO	10 ¢ew pa｜cur	ә＾पебъ ${ }^{\text {¢ }}$		
乙てعと00	＋992	$60000{ }^{\circ}$	2662	200000	1801	9 da	10［ew｜eald ${ }^{\text {a }}$ ］		иоп¢ ешидәa qeis	

－	－	690000	901	S00000	$9 て ゙ て$	9NM			Mepunog 753 M	
9／910＇0	$90^{\circ} \mathrm{L}$	$22000{ }^{\circ}$	90.2	＋00000	89^{\prime}	9dM		2 414150 d		
－	－	－	－	－	－	9NS	10 ［ew leald 1	әппебә		
－	－	－	－	－	－	9d5	$10[\mathrm{eW}$	2M1！ 190 d	Kuepunog yınos	
Ett000	tht	LtL000	16 己	600000	$1 / 0$	93		ә» $¢$ ебә ${ }^{\text {a }}$	Repunog 7 se 3	
LLZLOO	9901	G 0000	812	900000	$9 て ゙ て$	9 N	10\％en［3pueds	әпपебə	Mepunog caton	
－		090000	151	900000	$9 \chi^{\prime}$ て	9N0	10¢ew pa｜cub	ә» $¢$ ¢бэ ${ }^{\text {¢ }}$		
G 29100	90.2	z 20000	90%	＋00000	89.	9 dO		${ }^{2 \times 14} 150 \mathrm{~d}$		

$\dagger \angle 8000$	$09 \cdot 1$	t＋0000	ャ6てし	± 00000	$90 \cdot t$	$\angle \mathrm{NM}$	10［ew｜eoldk｜	ә＾¢ебә ${ }^{\text {a }}$	Lispunog $75 \times \mathrm{M}$	
L9LLOO	0891	LL000 0	こGを	E0000＇0	66° 己	$\angle \mathrm{dm}$		2 M 41.150 d		
t $\angle 800{ }^{\circ}$	$09^{\prime} \mathrm{El}$	＋ $6000{ }^{\circ}$	カ6゙てL	＋ $0000{ }^{\circ}$	90＇t	LNS	10［ew［es ldkl			
LGLLOO	0891	L2000 ${ }^{\circ}$	そGEL	E00000	66° 己	LdS		2 M 17150 d	Kepunog ypnos	
6 6e000	9691	乙80000	90 ¢	$90000{ }^{\circ}$	861	13	10u！n｜appueds	әдпебә ${ }^{\text {¢ }}$	Repunog 753	
Z92000		$1.9000{ }^{\circ}$	で0	＋0000 ${ }^{\circ}$	90 t	LN	10fen［Pupueds	ว＾¢ебว N	kepunog［40 ${ }^{\text {a }}$	
695000	8081	$8+0000$	t9 21	t00000	$90 . t$	LNO		ว＾¢ебә N		
L＋LLOO	29 $\varepsilon 1$	$\angle 1000{ }^{\circ}$	0891	E00000	66 己	LdO	do［ew［eo！dkl	${ }^{\text {a }}$（1？ 150 d		

－		990000	960	900000	$06 \cdot$	8NM		ә＾пебэ入	Lepunog $75 \times \mathrm{M}$	
20stoo	229	$\dagger 20000$	で9	± 00000		8 dm	10！ew le？${ }^{\text {d／}}$			
－	－	－	－	－	－	8N5	10！ekn leatk	әлпебә ${ }^{\text {¢ }}$		
－	－	－	－	－	－	8d5	10［eN｜ealdk	2 17150 C	Mepunog yznos	
0th 100	$8{ }^{\circ} 6$	190000	＜$\dagger 9$	E00000	GLO	83	10u！N／12pueds	әппебə	Ruppunog 7583	
092000	18°	$69000{ }^{\circ}$	1.9	900000	06 L	8 N	dolern｜zapueds	әппебә ${ }^{\text {a }}$	kepunog calo	
－	－	990000	981	900000	061	8 NO		әппебә ${ }^{\text {¢ }}$		
E92 Loo	27.9	七20000	229	± 00000	$1 \varepsilon \cdot$	8 dO				

Table B8.2 Plastic Hinge Energy Calculations

[^7]JA-4107

APPENDIX C
Interior Column Stability
Analysis Report

APPENDIX C - INTERIOR COLUMN STABILITY ANALYSIS REPORT

WORLD TRADE CENTER 7 COLLAPSE INVESTIGATION
 New York NY

Prepared for

Gennet, Kallmann, Antin \&t Robinson PC
Greenbaum, Rowe, Smith \&t Davis LLP
12 February 2010

By
Guy Nordenson PE, SE

TABLE OF CONTENTS

	TABLE OF CONTENTS	Page
C1.0	INTRODUCTION	C1
C2.0	BACKGROUND ON THE ASSESSMENT OF COLUMN STABILITY	C2
C2.1	Stiffness and Strength Requirements for Adequate Lateral Bracing	C2
C2.2	Actual Conditions of WTC7 Columns	C4
C2.3	Computer Analysis Methods to Assess Stability	C6
C3.0	INTERIOR COLUMN STABILITY ANALYSES	C8
C3.1	Basis of Buckling Sequence	C8
C3.2	Interior Column Stability Analysis Input	C8
C3.3	Interior Column Stability Analysis Results and Interpretation	C13
C4.0	ADDITIONAL STABILITY STUDIES	C15
C4.1	Evaluation of Column Stability with 2\% Bracing Provided	C15
C5.0	INTERIOR COLUMN CONNECTION TYPE CATALOGUE	C16
C6.0	INTERIOR COLUMN BRACING CAPACITY TABLES	C41

[^8]
JA-4110

C1.0 INTRODUCTION

This appendix provides additional information on the methodology and results of the column stability analyses conducted on the eastern interior columns of WTC7. The purpose of the analyses was to assess the stability of Columns 79, 80 and 81 in World Trade Center 7 (WTC7) following the initiation of collapse (both Scenarios A and B identified in the main summary report) based on the strength and stiffness of their lateral bracing conditions.

C2.0 BACKGROUND ON THE ASSESSMENT OF COLUMN STABILITY

In order to provide context to the column stability analyses that were carried out for the eastern interior columns of WTC7, this section reviews the fundamentals of column stability theory, highlights the vulnerabilities associated with the lateral bracing of the WTC7 interior columns, and provides an explanation for the analysis method that was used.

C2.1 Stiffness and Strength Requirements for Adequate Lateral Bracing

An ideally straight column does not impose any lateral loads on its bracing members until it reaches its critical load capacity (or buckling load, P_{c}). If its bracing member is a sufficiently stiff spring, the column will maintain its position at the brace and buckle in two half waves above and below the bracing location at four times the load ($4 * \mathrm{P}_{\mathrm{c})}$). However, if the bracing member is a relatively flexible spring, it will not be sufficient to prevent the column from buckling in a single wave, which will occur at a load only somewhat higher than the buckling load, P_{cr} (Figure C2.1a-d) (Ref 15).

Figure C2.1a-d Effect of brace stiffness on the buckling of an ideal column. (a) unloaded column with lateral brace (b) buckled column without intermediate brace (c) buckled shape for stiff spring as intermediate support (d) buckled shape for flexible spring as intermediate support. $P_{\text {cr_A }}>P_{\text {cr-B }}$ (Ref 15)

In reality, columns are not ideal and they have imperfections, including initial out-ofstraightness due to allowable fabrication and erection tolerances, which impart lateral forces on floor structure when the columns are loaded vertically (Figure C2.2). When a column has adequately stiff and strong lateral bracing, the secondary effects of the imperfections are negligible. However, if a column is not sufficiently braced, the effect of the crookedness may be amplified, leading to buckling (Ref 15).

Figure C2.2 Lateral forces and displacements resulting from initial crookedness of column

Section 5.31 of William McGuire's Steel Structures (Ref 15), first published in 1968, provides a methodology for determining for simple cases the stiffness and strength required to adequately brace a column using simple hand calculations. The required stiffness of a lateral brace can be determined directly from the ideal case of a straight, axially-loaded column (Figure C2.3). The required strength, however, must be established based on the assumption of imperfections in either the geometry of the member (ie crookedness) or the loading (ie non-axial forces). Typically the crookedness assumed on a column is correlated to its expected buckling shape.

Depending upon the assumptions made about imperfections and the number of braced stories, McGuire calculates that the required force to adequately brace a column ranges approximately between 0.7% and 3% of the buckling load of the column $\left(P_{c}\right)$. He also states that the calculations "support a frequently used rule of thumb that bracing having a capacity on the order of 2 percent of that of the main member will provide full support." (Ref 15)

The governing edition of the Building Code of the City of New York (Ref 8) at the time of WTC7's design contained a provision for the required axial capacity of members providing bracing to columns that was consistent with this statement. The excerpt from the Building Code of the City of New York is shown in Figure C2.4. In this standard, the 2% bracing requirement is a function of the axial load in the column rather than its buckling load, so the magnitude of the 2% cannot be directly compared to the percentages calculated by McGuire. The 2\% requirement applies to the sum of the capacities of the members bracing a column in each direction, major or minor.

Figure C2.3 Calculation of required stiffness $\left(\mathrm{k}_{\mathrm{id}}=2 \mathrm{P}_{\mathrm{cc}} / I\right)$ for simple ideal case using small deflection theory (Ref 15)

C26-1001.2 Bracing. - Unless otherwise specified in the reference standards, members used to brace compression members shall be proportioned to resist an axial load of at least 2 per cent of the total compressive design stress in the member braced, plus any transverse shear therein.

Figure C2.4 NYC Building Code excerpt regarding lateral bracing (Ref 8)

C2.2 Actual Conditions of WTC7 Columns

C2.3.1 Out-of-Straightness Conditions
In order to perform a stability analysis, an initial out-of-straightness must be applied to the column. AISC design column bracing specifications use a slope of 1:500 to establish minimum brace forces. At the time that WTC7 was constructed, the maximum allowable erection tolerance according to the AISC Code of Standard Practice for deviation from a plumb line was 1:500, and the working points of splice levels could not fall outside a horizontal envelope of 1.5" from the plumb line (Ref 2 and Figure C7.7 Ref 3).

WTC7 Global Collapse Analysis - Appendix C

In reality, the out-of-straightness of the eastern interior columns may have been greater than its initial erection tolerances as a result of building movements and deformations induced by the northeast floor collapse described in Stage 1 of the collapse sequence (see Appendix B of the main summary report) and the thermal effects on the floor framing of fire on numerous levels of the building. Therefore, the crookedness of 1:500 used in the stability analyses, without consideration for additional possible deformations due to the fires and floor failures, is considered to be a reasonable, if not conservative, estimate of the actual crookedness of the columns immediately before buckling.

The girders and floor beams framing into and providing lateral bracing to the interior columns were therefore subjected to lateral loads as a result of this out-of-straightness due to the gravity loads in the columns.

C2.3.2 Bracing Conditions

The majority of the girders and floor beams framing into the interior columns of WTC7 were connected to the columns by welded double-angle knife connections. The capacity of each connection governed the overall capacity of the bracing member. As documented in the report by Dr Anthony Ingraffea (Appendix A of the main summary report), these knife connections were weak in tension due to their susceptibility to weld fracture. Because many of these double-angle knife connections were used in cases where a column was braced on only one side, they were required to work in both tension and compression to brace the column. Therefore, the weakness of these connections in tension governed their ability to provide bracing to the columns. As explained in Section 4.2.3 of the main summary report, the concrete floor slabs of WTC7 were unable to contribute to the capacity of the lateral bracing system of each column.

Tables 4.2 through 4.25 in the main summary report provide a comparison between the code-prescribed 2% bracing requirements for the WTC7 interior columns and the design capacity of the girder and floor beam connections that braced these columns. Design capacities rather than expected capacities are presented in these tables to illustrate the code check that the Engineer of Record should have made during the design process'. The tables highlight that over 46\% of all floor-to-interior column joints in the building did not meet the 2% code requirement in at least one direction.

The tables in Sections C. 5 and C. 6 provide additional information on the interior column connections and the bracing capacity calculations summarized in Tables 4.2 through 4.25 of the main summary report.

[^9]
C2.3.3 Buckling Vulnerability

WTC7's conditions of allowable out-of-straightness and bracing weakness described above indicate that the interior columns were vulnerable to buckling. As described in the next section, a methodology was therefore developed to assess whether under these allowable out-of-straightness parameters, the weak double-angle knife connections had sufficient stiffness and strength to provide adequate bracing to the eastern interior columns and to allow them to carry service loads as adjacent floor structure was lost.

C2.3 Computer Analysis Methods to Assess Column Stability

The methodology described in McGuire for determining the required stiffness and strength of a member to adequately brace a column is relatively straightforward for a column with a limited number spans; however, the analysis increases in complexity for a column with up to 48 spans and varying section properties and axial loads along its height, such as is the case for each interior column of WTC7. For this reason, a methodology for assessing column stability using a computer structural analysis program was sought.

In general there are two types of computer analyses used to assess the stability of a column. The first is a linear buckling analysis, an eigenvalue analysis that considers an ideally straight column and determines the modes of instability of the column due to a specific loading condition. The results of this type of analysis are consistent with Euler buckling formulas. The second type of stability analysis is a second-order geometrically nonlinear analysis, which considers a column with either an initial crookedness or an imposed lateral load in addition to a vertical load.

A linear buckling analysis is often used to calculate the buckling factor for a column with fixed support conditions and no intermediate supports, such as a pin-ended, single-span column. Also, because the analysis is able to take into account the effect of the stiffness of lateral bracing, it can be used to accurately determine the buckling behavior of a column with intermediate supports defined as springs. However, because a linear buckling analysis deals with ideally straight members, it is not possible to use this type of analysis to determine the resultant force on a brace due to a specific buckled form or the required capacity of the brace to activate a certain buckling mode.

A second-order stability analysis, however, is able to account for the effects of both the stiffness and the strength of intermediate lateral bracing on a column. It can also take into account material nonlinearities such the presence of a finite lateral brace capacity. Furthermore, it is able to analyze the effect of different initial crookedness configurations. As a result, it was determined that a second-order nonlinear analysis
was the most applicable approach for assessing the effect of the weak lateral bracing conditions of WTC7's interior columns and the susceptibility of these columns to buckling.

The analyses were performed using SAP2000 Advanced Version 12.0.2, a structural finite element analysis program developed by Computers and Structures Inc of Berkeley CA. Because of the complex interactions of the nonlinear lateral supports and the tendency for numerical instabilities resulting from the oftentimes simultaneous failure of these lateral supports, a dynamic time-history (direct integration-type) second-order analysis was used instead of a static one. This approach provided better stability, and the loads were applied quasi-statically with 99\% damping in order to minimize the dynamic effects. The nonlinear features of the analysis included both geometric nonlinearity (P -Delta plus large displacements) and nonlinearity of the lateral bracing capacities. No other material nonlinearities were considered in the analysis - the material behavior of the column itself was elastic.

Prior to running each second-order analysis, a linear buckling analysis was performed to assess the most probable buckling shape, which then informed the initial crookedness used in the second-order analysis. Refer to Section C3.2.5 for additional information.

C3.0 INTERIOR COLUMN STABILITY ANALYSES

This section provides details of the stability analyses conducted for each of the eastern interior columns in WTC7.

C3.1 Basis of Buckling Sequence

The bracing conditions used in the stability analyses for Columns 79, 80 and 81 were based upon an assumed sequence of failure corresponding to the probable global collapse sequence detailed in Section 5.3 of the main summary report.

Figure 5.3 in the main summary report illustrates that Column 79 is first vulnerable to buckling following the failure of the northeast floor areas on the lower levels of the building due to the weakness of the remaining double angle knife connections in the south and west directions. Immediately following the failure of Column 79 and the loss of the floor structure to the north and east of Column 80, Column 80 becomes susceptible to buckling. After Column 80 buckles and the floor areas supported by the two transfer trusses collapse, Column 81 loses its western brace and becomes vulnerable to instabilities along its minor axis. The analyses described in Section C3.2 were conducted in the order described above to validate this sequence of column buckling and show that each vulnerable column would have buckled under the loads it was carrying at the time of collapse.

The other twenty-one interior columns west of Columns 79, 80 and 81 were not analyzed for stability because other mechanisms are responsible for their failure as described in the probable collapse sequence in Section 5.3 of the main summary report. Columns 76, 77 and 78 collapse due to the failure of Transfer Trusses 1 and 2. The remaining interior columns to the west then fail due to the rupture and instability of the floor diaphragm. Based on their pervasive lateral bracing code violations and the prevalence of the fracture-susceptible double-angle knife connections used to brace them, it is probable that these other interior columns would have buckled sequentially as their adjacent floor areas failed had other mechanisms not caused them to fail.

C3.2 Interior Column Stability Analysis Input

This section provides a basis for the assumptions used in the stability analyses for the three eastern WTC7 interior columns. Additional documentation of the analysis assumptions is provided in Figures 5.17, 5.18, 5.20 and 5.38 of the main summary report.

C3.2.1 Loading

Except for Column 79, the load applied to each column corresponded to its original sustained gravity load (1.0DL + 1.0SDL + 0.25LL) taken from the complete SAP2000 global model. The original load, prior to loss of floor slabs, was used due to the rapid nature of buckling and the fact that the lateral bracing provided by the collapsing floors would be lost prior to the load from that floor. For Column 79, however, the load was reduced based on the loss of the floor areas tributary to Girder 44-79 from the ground to Floor 13. Figures $5.17,5.18,5.20$ and 5.38 of the main summary report provide the detailed loads applied to each column. To reduce numerical instabilities, the loads in the second-order stability analyses were applied quasi-statically as timehistories with a linear ramp over one second and a plateau as well as 99\% damping.

C3.2.2 Section Properties

Each interior column consisted of a A572 Grade 50 W-shape which was in some cases, especially at lower floors, built up with side, web and/or flange plates of varying thicknesses. All reinforcing plates 2" thick or thinner were A36 steel; plates over 2" but less than 4" were A588 Grade 50 steel; and plates over 4" were A572 Grade 42 steel. Figures $5.17,5.18,5.20$ and 5.38 of the main summary report provide the frame sections along the height of each column.

C3.2.3 Base Support Conditions

The bases of the Column 79, 80 and 81 models were assumed to be pinned at grade because the base details provided did not allow sufficient rotational fixity for it to be considered partially or fully fixed.

C3.2.4 Bracing Conditions

The bracing condition used for each column stability analysis corresponded to the sequence of collapse established in Section C3.1 based on the configuration and characteristics of the bracing connections. Figure C3.1 provides the bracing condition of the columns in accordance with this sequence.

In these figures, the highlighted yellow connections represent either seated or headertype connections, which were conservatively assumed to have unlimited tension and compression capacity for the purposes of the stability analyses and were therefore modeled with linear springs with a high stiffness of 100,000 kips/in, which allowed a similar bracing condition to that provided by the intact floors in the global structural model (Earlier parametric studies which varied the spring stiffness showed that this value provided similar restraint to a pinned lateral support).

In these figures, the red connections represent the axially-weak welded double-angle knife connections. These connections were for the most part modeled as nonlinear links with finite tension capacities in the stability analyses. The skew of the girders framing into Columns 79, 80 and 81 complicated the boundary conditions of the analyses because the two double-angle knife connections in each analysis were not orthogonal. As a simplification, nonlinear links were therefore assigned for the doubleangle knife connections providing bracing to the column in its minor axis only because this is the direction in which the column was most likely to buckle. The double angle knife connections bracing the major axis of each column were assigned linear springs with no finite capacity.

The ends of the nonlinear links were restrained for displacements in the axial direction, and for all rotations. The links were defined so as to act in their axial direction only. The ultimate tension limit of these links was set to $0.85 \mathrm{kips} / \mathrm{in}$ of knife connection depth based on Dr Ingraffea's fracture analysis (see Appendix A of main summary report). This unit value of 0.85 kips/in was multiplied by the depth of each knife connection to determine the total tension capacity of each connection. The links were assumed to be infinitely strong in compression with a stiffness equal to the stiffness of the other springs in the model ($k=100,000 \mathrm{kips} / \mathrm{in}$).

Figure C3.2 shows the link force-displacement curve for a 14.5" knife connection, the tension side of which was generated from Dr Anthony Ingraffea's ANSYS 3D large displacement analysis which included vertical shear on the connection. To generate similar plots for different length knife connections, this plot was scaled according to the actual length of each connection divided by $14.5^{\prime \prime}$ on the basis that the stiffness and strength are proportional to the length of the connection. The scale factors and characteristics for each knife connection bracing an interior column are listed in the tables in Section C5.0.

Two analyses were run for Column 79 corresponding to Scenario A (floor failure initiating at Floor 13) and Scenario B (floor failure initiating at Floor 10) described in the main summary report.

Figure C3.1 Sketches of interior column bracing conditions as floor collapse progresses (collapsed slabs are indicated in orange and pink)

Figure C3.2 Axial force-displacement curve for a link corresponding to a 14.5"-long double-angle knife connection

C3.2.5
 Initial Crookedness

Because the shape of the crookedness of each column immediately following adjacent floor collapse cannot be known, the stability analyses considered all possible crookedness configurations within the 1:500 slope limit described in Section C2.3.1. The demonstration that any one of these configurations caused instability of a column was sufficient to establish that the column would buckle. Therefore, to reduce the number of analysis iterations, the most critical out-of-straightness within the permitted erection tolerance limits was identified and only this case was run. This crookedness was imposed between column splice points. Otherwise the column elements were straight.

For each column, the selected crookedness corresponded in general form to the expected buckling shape of the column upon failure of links, which for each column was a half wave over the lower floors of the building. The specific location and height of the crookedness was determined using a series of linear buckling analyses in which lateral supports to the column were sequentially removed from the lowest vulnerable portion of each column until an eigenvalue corresponding to the first mode of buckling (ie "buckling factor") of less than 1.0 was produced, an indication that the column would not be able to support its sustained loads if it were to be unbraced over this height.

Once the height of the crookedness was established, the location and direction of the "kink" in the crookedness was selected to impose the most critical lateral force on the lateral bracing members in tension. This simulation provided a realistic representation of the lateral forces that may well have been exerted on the column's bracing elements as a result of its allowable out-of-straightness. Figures $5.17,5.18,5.20$ and 5.38 of the main summary report show the crookedness used in each column stability analysis.

C3.3 Interior Column Stability Analysis Results and Interpretation

The results of the stability analyses demonstrate that for each interior column considered, the lateral bracing that the column was forced to rely upon following an adjacent floor failure was insufficient to brace it under sustained loads. In each case, the lateral forces imposed on the weak welded double-angle knife connections under the sustained loads were large enough to sequentially fail, or "unzip", the column over a sufficient height to cause it to buckle. The specific results for each column are presented in Figures 5.17, 5.18, 5.20 and 5.38 of the main summary report. The following is a summary of the general results of these studies.

C3.3.1 Link Failures

The nonlinear links in the models began to fail under application of sustained service loads. In each case, the first link failure was followed immediately by the failure of adjacent links due to load redistribution, effectively "unzipping" the column over a certain height.

C3.3.2 Column Forces and Deformations

For each column, the link failures progressed until a sufficient number had failed to cause uncontrolled increases in lateral deformation and bending moments as a result of P-Delta effects.

Because the analysis was not set up to capture the inelastic material behavior of the column itself, the results of the analyses are valid only until the column cross-section reaches its yield stress at its extremities due to the combined effects of axial compression and bending moment. This point is taken as the buckling point and the end of the analysis because the areas where the column's cross-section has reached the yield plateau have zero stiffness ($E=0$) and are no longer able to provide resistance to the bending forces inherent to buckling. Therefore a smaller cross-sectional area is left to resist the same bending forces, causing a rapid deterioration of the stability of the column, or inelastic buckling (Ref 18).

To determine the yield (or buckling) point for each column, the maximum resultant stress (P/A $+\mathrm{Mc} / \mathrm{I}$) for each time step and for each cross-sectional type over the buckled height was calculated. The first point at which the maximum resultant stress at any location in the column exceeded the strength of the steel was taken as the buckling point. The steel strengths used for these calculations corresponded to the averaged values determined from available mill test reports and were therefore higher than the standard design strength values. Figures 5.17, 5.18, 5.20 and 5.38 of the main summary report provide the stress calculations for each column.

C3.3.3 Data Output

Result plots were generated to illustrate the onset of buckling of the columns under their sustained loading. A plot was generated for each column showing the maximum lateral displacement versus load step. Figures 5.17, 5.18, 5.20 and 5.38 of the main summary report provide the plots for each column analysis. The plots show that the lateral displacements increase exponentially as the analysis progresses. At the onset of yield in the column, the slope of the curve has significantly increased, indicating instability of the structure.

C4.0 ADDITIONAL STABILITY STUDIES

Supplementary stability analyses were conducted on the eastern interior columns of the WTC7 structure in order to further substantiate that the non-code compliant lateral bracing of interior columns was a principal factor in the global collapse.

C4.1 Evaluation of Column Stability with 2\% Bracing Provided

Stability analyses using design loading (taken from the SAP2000 global model, including reduced live loading) with the same methodology as described in Section 3.2 were run for Columns 79, 80 and 81 using the same assumptions regarding adjacent floor failures. However, instead of using the actual capacities of the lateral bracing, the links were increased to provide either 1 or 2% of the design loads in each column at each level depending upon the number of sides on which the column was assumed to be braced. Figures 5.19, 5.21 and 5.39 in the main summary report present the primary input parameters used in the analyses as well as the results. Only Scenario A for Column 79 was considered because a demonstration of structural stability for Scenario A (ie floor failure initiation at Floor 13) implies structural stability of Scenario B (ie floor failure initiation at Floor 10).

The results presented in Figures 5.19, 5.21 and 5.39 of the main summary report show that after application of the full design loads on the columns, no links have failed and as a result, the bending moments in the columns are very low. The displacement plots which increase linearly as the load is applied and then stabilize illustrate that the columns are stable.

JA-4126

INTERIOR COLUMN CONNECTION TYPE CATALOGUE－COLUMN 58

				lan					bat					man					mar		
	amm	tom	tmem	San	Lemptow	tow＇	som	${ }^{\text {tmom }}$	5	［mmation	＋ a （ ${ }^{\prime}$	tom	tment	St	Lmpaticl	few	tmm	tme	sar	tomom	＇sew＇
mour	when	mats	0.	Hexin	${ }^{3}$	14	whes	sat	wemin	＂15	\cdots	wame	neto	unevis	145		weme	nem	Lussis	＂s	
5me	witm						wiout	cis	（ters\％	＂s	on	whest	noter	unavic	1 cs		wman	Hocter	nman	＂	
7mea 6	พ14\％	wrowo	Hatm	tutis	3 s	\％	We．t	Sot	（tamos	＂15	O\％	wame	thate	unisic	${ }_{35}$	－	wases	Hecter	H1008	\square	．
Fams		wath	Sos	Lemen	us	129	wnou	cot	wenn	＂15	on	w7mas	Hesta	Lamas	us	－	mase	Nome	Lunerio	4	．
nuw	witew	matis	sis	tmon	\％s	13	watu	Sar	Lemen	＂	or	mame	noter	unselic	＂ 15		mase	trete	Unowis	${ }^{5}$	
風 4	Wham	mats	sot	temon	＂s	13	wiou	cat	weon	＂s	or	whmen	noter	thes	us	\cdots	meas	Hen	nossis	＂	\cdots
Fam？	wxw	wama	5	twin	＂s	13	What	Sist	（tame	＂s	on	meses	Homm	Unsuc	＂ 5		Weses	＋2mi	1mosis	s	－
Pmea	witam	watus		men	\％s	127	wiou	sat	（terso	＂s	$\stackrel{\square}{ }$	womat	Hoter	1	＂s	．	mase	Hent	Lows	$\stackrel{3}{ }$	
70e40	wazar	watis	Sist	Leman	15	127	\cdots	\％at	Lemon	＂15	on	wees	Heter	Dosis	${ }^{15}$	\div	mese	Hetr	Luasts	＂	\cdots
Famen	wisan	matas	Sis	（twon	＂s	121	weme	cis	（emono	13	－＂	wames	notm	tmeno	＂15	．	mase	Hatre	Unow 16	＂	．
7em 19	wimay	wats	Sis	（tasin	＂	13	wome	com	coson	＂s	on	wases	noter	users	＂		mase	$\xrightarrow{\text { tatam }}$	unosis	is	
戓11	wturt	wathe	sot	weme	us	127	wzisu	sat	whem	＂15	\because	wzant	netor	than	$1{ }^{15}$	－	wimes	Hemom	moses	4	．
Ater 16		matis	sant	twene	13	14	wiou	sat	teman	115	$\stackrel{\square}{ }$	meses	noter	unsil6	＂s	．	wrest	＋mmermer	10 mals	$\stackrel{3}{ }$	－
騅 x		wails	6.	（tams	＂s	13	wᄁu	sat	（menen	18	or	wnow	Notr	Lnew	10		mase	Hent	Lowsis	＂	
2men	mieno	wasts	Sisk	tman	＂s	13	witu	Sma	（tamo	＂	\％＂	wates	nore	Losis	＂1s	\cdots	wese	Hemm	Lumale	${ }^{3}$	\cdots
Fann	whari	mats	6.	wemen	＂s	121	wisu	Sot	Herso	＂s	on	w7mes	treter	10×30	us	\cdots	mess	＋	Umasic	\％	－
7men	wuax	matu	Sist	Wemen	18	127	wiou	sat	（winn	＂15	\because	wates	trato	nosers	＂15	－	meas	Heto	Hosis	$\stackrel{3}{ }$	
Amen		wastis	cos	tmeno	us	127	${ }_{\text {wiout }}$	cis	（tamor	＂15	${ }^{\circ}$	w30xat	nester	（mane	us	．	mess	Heto	Unasis	4	－
mexo	whets	wats	sot	（minn	05	127	wnew	Sot	（am）	＂s	on	wases	trate	unsers	＂15	\cdots	wame	Heter	Lmasis	4	－
戓动	wremo	wathe	\sin	wemen	us	${ }^{13}$	${ }_{\text {mbas }}$	sat	Lemen	＂15	$\stackrel{\square}{ }$	w7xnct	Hetm	1 meno	4		mbas	\pm temo	Lamalic	\％	
man	maem	mats	Sont	twene	0	13	wisu	sat	tario	＂ 1	on	wases	noter	unsis	＂15	\cdots	wase	tuatr	Limsic	s	－
	mum	mats	6.	（tann	13	127		\cdots	wose	＂s	or	wimes	Nore	Lumas	＂s	\because	mbes	＋6mer	Loxsis	＂	
fane ${ }^{6}$		watic	kst	twon	15	13	${ }^{\text {wnout }}$	sis	Lemon	＂s	－	matess	notm	unasic	${ }^{15}$	－	masi	tomer	Umasie	＂	－
fum	wiuso	matu	${ }_{5} \mathrm{sar}$	（mann	＂s	127	wiuc	5	（emeno	＂s	$\stackrel{\square}{ }$	women	noter	（mano	$\stackrel{3}{ }$	－	meas	Hetm	Lasali	$\stackrel{15}{ }$	．
2ne 3	whes	matis	Sost	teman	18	127	whim	sat	（wom	＂ 1	－	mates	tore	Lusisic	＂ 15	$\stackrel{\square}{+}$	meas	Heter	पmasis	＂	
Fumn	wrowe	wnote	6in	wown	＂s	1π	wros	sint	（ters	＂	o＂	wamea	norto	（tame	$4{ }^{18}$	．	mast	Hatre	\square	＂	
nem n	mieso	wante	6	tusin	＂s	121	wase	\％ot	tesan	＂	on	wata	troter	unevic	＂s	\cdots	whase	tatr	Lesenc	＂	．
Fmer	mmose	wnilu	sots	tesens	0	19	wamo	sat	（6020	＂s	${ }^{\circ}$	wzmat	Noter	Lamen	\square	\bigcirc	mase	tentr	Lusas	$\stackrel{ }{ }$	．
Aner 70		matis	6ist	（teme	＂s	13	${ }^{\text {w2ma }}$	sot	14036	＂s	$\stackrel{\square}{0}$	mats	neter	Unowic	${ }^{\prime \prime}$	．	Wmese	neter	Umanis	$\stackrel{3}{ }$	
共＂	wneas	mata	cos	thens	18	17	mout	sat	（6）20	＂	$\stackrel{\square}{0}$	wzisu	Hetr	tame	\square	\cdots	mase	Hete		＂	．
men 19	wam	watu	sant	twis	＂s	17	wimu	sat	（6）${ }^{\text {an }}$	＂s	\％	wates	notr	unesic	＂	\cdots	wese	noter	Luasic	$\stackrel{s}{ }$	．
Fuan	musem	math	sist	tuman	＂s	13	wnitu	sat	Lemon	＂s	or	Wzone	Hester	（3030	${ }^{17}$	．	mbese	Netre	Lmanic	＊	
Fam 19	weam	matu		Wemen	$1{ }^{18}$	12	weitu	sat	womm	＂3s	\％	wates	thato	unesis	＂ 15		weas	Heto	Lowis．	＂	
Ame 15	wisom	matw	6．4．	（mens	＂s	121	wnit	cor	（emen	＂s	\bigcirc	wzow	Hertm	tmens	＂s	\cdots	meas	Hetm	Lunevic	＂	－
Amer		watas	Sost	teman	＂18	17	wnew	sot	${ }^{\text {Lemone }}$	＂	$\stackrel{\square}{\circ}$		notm		＂18	\cdots	${ }_{\text {mase }}$	Natm	Lumanc	＂	
	weero	${ }_{\text {mata }}$	${ }_{6}^{6}$	Wemen	＂s	127	$\frac{\text { mbut }}{\substack{\text { miout }}}$	$\stackrel{\text { cot }}{6}$		${ }^{\prime \prime}$	\％＂	$\frac{\text { wanes }}{\text { wies }}$	notm	Lsane	${ }_{\text {Is }}$		$\mathrm{mbase}_{\text {wase }}$	Hosm	Limale	＂	
		mants	5	Hesen	＂s	127	miout	5	10	${ }^{\prime \prime}$	O\％	wamel	Hemmer	0_{0}	${ }^{19}$	\div	${ }_{\text {maxe }}$	tome	Luosic	＂	\div
7am	wieno	wama	sant	twan	＂s	13	wiout	sint	（emen	＂	\％＂	wiess	Hatm	Usasic	＂s	－	Wiose	tome	Lusais	＂	－
年，	wient	matas	${ }_{5} \mathrm{sin}$	Lemin	＂s	131	wiou	sat	（amen	${ }^{\prime \prime}$	$\stackrel{\square}{ }$	Wว＞61	notm	（mano	$\stackrel{10}{ }$	．	whes	Hetm	Luasic	$\stackrel{1 s}{ }$	．
nus：	wien	matu	Sis	twan	178	127	wiou	sot	wom	＂	on	wates	＂tom	unosis	${ }^{\prime \prime}$	\cdots	mast	Heter	Lmasis	＂	．
amer	Secompomat		－	－	\because					－											
new		\cdots	－	－	．	．	－	－	－	－	．	．	－	．	．	．	\checkmark	－	－	．	．
－ant	\cdots	\cdots	－	．	\cdots	．	．	．	．	\cdots	－	．	－	．	－	\cdots	\cdots	\cdots	．	\cdots	．
Aner	－	－	－	．	－	．	－	－	．	\checkmark	．	－	－	．	．	．	．	－	－	－	
風		\cdots	\cdots	\cdots	－	－	－	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	．	．	\cdots	\cdots	－	．	\cdots	－
					－					－	－	．	．	．	．	．	－	．	．	－	
Notes	Scale fact No factor The Inform	listed fo ed for ams size ion spec		最 ember is ection			the 14.4 d to hav espond		analyze capacity nited ste	drawing	that	city and									

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 59

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010 \%

JA-4128
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 60

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\%$

JA-4129

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 61

3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 62

No factor listed for other connection types as they are conservatively assumed to have sufficient tensile capacity
2 Where no beams size is indicated no member is framing into the column
WTC7 Global Collapse Analysis - Appendix C
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 63
 2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
8.

JA-4132
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 64

NTERIOR COLUMN
couma
con
 2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Colum Stability Analysis Report
12 February 2010 80

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 65
 $\begin{array}{ll}\text { Notes } & 1 \text { Scale factor listed for each knife connection corresponds to ratio of depth to the } 14.5^{\prime \prime} \text { deep connection analyzed by Ingraffea for axial capacity and stiffness } \\ & \text { No factor listed for other connection types as they are conservatively assumed to have sufficient tensile capacity }\end{array}$

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 66
 Notes 1 Scale factorl listed for each knife connection corresponds to ratio of depth to the 14.5 " deep connection analyzed by Ingraffea for axial capacity and stiffness
2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010 $\%$

JA-4135

WTC7 Giobal Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
$\stackrel{\circ}{3}$

JA-4136
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 68

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 69

 2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 70

2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{m}{4}$

JA-4139
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 71

\qquad
\square
$5 x^{5} \sqrt[5]{5} \frac{5}{2}$
 Notes Scale factor listed for each knife connection corresponds to ratio of depth to the 14.5 deep connection analyzety
2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{\stackrel{\pi}{4}}{\stackrel{3}{6}}$

JA-4140

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 72
 $\begin{array}{ll}\text { Notes } & 1 \text { Scale factor listed for each knife connection corresponds to ratio of depth to the } 14.5 \text { " deep connection analyzed by Ingraffea for axial capacity and stiffness } \\ \text { No factor listef for other connecction types as they are conservatively yssumed to have sufficient tensile capacity } \\ 2 \text { Where no beams size is indicated no member is framing into the column }\end{array}$

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

caven																					
		non					somb					tom					mar				
not	maso	mantic	$\stackrel{t}{\text { mem }}$	(emorn	asm	${ }^{100}$	miam	\%mormer	Suman	${ }^{\text {Leng mol }}$	\%00	${ }_{\text {momat }}$	${ }_{\text {come }}$	Luosic	${ }_{\text {Lestaw }}^{\text {us }}$	Hew'	${ }_{\text {womat }}$	${ }_{\text {tom }}^{\text {momem }}$	5inem	Lmymbl	fant
50uct	wewo	\because	-	-	-	\because	muta	corn	\%039	13	1∞	wame	nomm	Lomes	${ }^{4}$	\cdots	wates	notr	unasm	us	\cdots
fium		-	meses	5	woma	13	127	Wame	Herm	Leman	${ }^{65}$	-	Otensel	+	uevors	n	.
nueds	wиew	.	-	.	-	-	museo	cont		45	1∞	meas	+me	umevic	us	.	*504ter	,	uners	ns	.
finu		-	\cdots	.	\div	-	mowo	Con	wenas	${ }^{4}$	1∞	meter	Hote	Lamer	us	.	waster	Nomer	bames	ss	-
Ama	whens															
fime 2		\because	-	.	-	.	waso	tant	14.308	${ }^{4}$	1∞	memers	tom	Lumsis	${ }^{18}$.	\%	nome	unosk	ms	.
nours	Wear	\checkmark	-	.	\pm	-										\cdots					
50\% 0		-	.	.	-	.	wiso	tant	unis	45	18	mente	\ldots	Usovis	${ }^{105}$.	wome	momer	umps	$\mathrm{ws}^{\text {s }}$.
naun	wrexo			.	\cdots		masso	cotr	14×30	${ }^{4}$	1∞	wemer	Hoto	tomes	\%	.	*5ase	netr	unars	85	
5aun		\cdots	Weeo	cot	umas	145	1∞	memes	Homo	vory	us	.	*rase	Herer	vases	ms	
nown	wrewe	.	-	.	\cdots	.	masso	Goth	(1030	${ }^{4} 5$	1∞	mewe	+	Luosis	${ }^{4}$	-	WGote	Noter	uopes	ns	\pm
Amm 18		-	.	.	-	.	menso	corr	temas	15	1∞	matre	\ldots	unosis	${ }^{18}$.	5	Howr	womes	35	.
nem	wrem			.	-	.	maso	cor	Lemas	45	1∞	menti	Home	Lemer	${ }^{19}$		*rater	nomm	Lusers	${ }^{35}$	-
Aner 4		-	-	.	\because	-	misso	Sont	wemes	${ }^{4}$	180	meter	Nata	Lumers	"s	.	wast	Hostr	vanas	ms	.
(0un	whesh	\checkmark	-	.	-	.	miso	Sont	Hex10	${ }^{4} 5$	+180	mater	nem	Luestis	${ }^{\prime \prime}$		*50iter	tratr	umss	35	.
fum 2				.	\because	.	masa	cost	14.388	${ }^{4}$	\pm	mews	nomm	LTamis	${ }^{0}$.	wate	nom	uams	ms	
5am 11	wueso	.	\cdots	.	\cdots	.	masso	Kot	wemas	${ }^{4}$	18	Wever	nata	Lumpre	105	\cdots	whate	Heter	umase	ms^{5}	.
num 10		-	\cdots	.	.	.	masa	Sant	(10230	14	1∞	mamel	$\underline{ }$	Lams	"s	.	whoter	nemer	umas\%	ms	.
neme	wress	.	-	.	\cdots	-	miseo	cort	14.30	${ }^{4}$	$1 \times$	menes	+mo	Lusoys	us	-	45	+	Lunes\%	35	
nem 29		\cdots	\cdots	.	\cdots	\cdots	miseo	cos	Lemes	13	1∞	mewes	\ldots	Lumesis	195	-	*5ater	Herr	uaneys	ms^{5}	
Amen	wreas	mase	cont	tuens	${ }^{4}$	18	meats	nome	LTasis	45	.	*5ater		tanas	ms	.
7ta 29		\cdots	\cdots	.	-	-	wies	tort	(10300	45	1∞	water	nem	Lumpuc	\%	.		nomer	uasers	ns	.
now 15	wwast	.	\cdots	.	\cdots	.	m2me	Sont	Hemas	${ }^{4}$	18	memel	Heno	unovic	us	\cdots	*5amm	Hetr	unose	${ }^{2}$	
num 4		meers	tant	(tins	"s	${ }^{17}$	H6,	Hotr	LTovis	m	.	wene	nomer	Lanss	17	.
funn	wreno	.	.	.	-	.	Tarmozr	5	1 tras	205	14	Now	Hasm	Lsovic	${ }^{\text {ns }}$.	wizas	Nomm	nowes	$1{ }^{18}$	-
new n		.	-	.	.	.	maneo	cor	use20	45	1∞	6004	Hom	Loekt	${ }^{\text {as }}$	\cdots	wiost	Notre	noses\%	us	\cdots
nem		-	\cdots	.	\therefore	\therefore	mame	Som	16ane	${ }^{148}$	1∞	\cdots	Smed	\cdots	\bigcirc	\therefore	${ }_{\text {wreat }}$	Sost	Leman	${ }^{48}$	
		:	\div	.	\div	:	miso	5	${ }^{1 / 4}$	4	$\frac{180}{10}$	\%aver	nem	\div	-	\div	${ }_{\text {whemes }}$		(tmen)	${ }_{\text {us }}$	$\pm \infty$
5		\div	\div	.	\div	\div	miso	cot	mamat	${ }^{4}$	1∞	*0sto	sheod	-	\div	-	Werat	cot	tmens	45	$\pm \infty$
Aman		-	\cdots	.	-	-	mase	ratr	wems	45	19	50	semer	.	-	\cdots	Weras	Son	uman	4	1∞
7um 16				.		-	miess	Snt	(40348	18	18	coim	nom	.	\because		wime	tat	Lemen	"s	121
fum 1		-	-	.	-	-	anmera	con	40203	8	13	N6om	nemed	.	.	.	wames	Sume			
Aner 14					\cdots	.	meso	Cur	une3s	4	${ }^{\circ} 9$	Natur	semed		.	-	mease	50	Lex\%	${ }^{4}$	$1 \times$
Amı11		.	-	.	.	.	mamo	corr	Lemen	$\stackrel{5}{ }$	$\bigcirc 9$	Wasor	nem	.	-		wame	5	10xua	${ }_{48}$	1∞
fin 12		.	-	.	.	.	mato	sobr	Wenso	4	\bigcirc	woim	hener	.	.	.	weme	sma	terin	${ }_{4}$	1∞
fuer		.	\cdots	.	\cdots	.	maso	sor	16men	4	03	*Gate	nemed	.	.	.	wrees	cm	1 Lemin	4	1∞
Ame 10		.	\div	.	-	-	mase	cont	(4020	4	\bigcirc	650	send	.	-	.	wate	cat	1meno	us	${ }^{\infty} \times$
naw		.	-	.	-	-	meno	cont	Lemens	4	09	${ }^{50} 5$	send	\bigcirc	-	-	wame	5 mb	Hemin	${ }^{4}$	15
nat							mase	tint	(timen	4	os	Nate	num				wates	cat	Luma	45	1∞
9mer		mase	Nat	Umown	$\stackrel{5}{4}$	$\stackrel{5}{ }$		tumom				woze			4	15	whaso	Cuntion	ntsta	as	16
nowi		m-	5	${ }^{\text {ntoax }}$	"		wienc	${ }_{\text {com }}^{\text {fin }}$	nestin	138	-	${ }_{\text {Wmatem }}$	Stiote		\div		womeno	tomiom			
		\div	\div	.	\div	\div	$\mathrm{m}_{\text {mienc }}$	${ }_{\text {comem }}$	ntsharassone	1500	\div	Whata	$\xrightarrow{\text { ank }}$	Luens	as	20	woxo	${ }_{\text {comem }}$:	\div	
fun	Easarca	\checkmark	\checkmark	\because	\bigcirc	\because	meters	$\stackrel{m}{ }$		${ }^{3}$	\because	-	\because	-	\because		-	\cdots	.	\checkmark	.
fum				-	-						-	
Note	1 Scale factor listed for each knife connection corresponds to ratio of depth to the $14.5^{\prime \prime}$ deep connection analyzed by Ingraffea for axial capacity and stiffness No factor listed for other connection types as they are conservatively assumed to have sufficient tensile capacity 2 Where no beams size is indicated no member is framing into the column 3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection																				
WTC7 Global Collapse Analysis - Appendix C Page C32																					

$\stackrel{6}{3}$

JA-4142

INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 74

 to the $14.5^{\prime \prime}$ deep connection analyzed by Ingraffea for axial capacity and
sumed to have sufficient tensile capacity
WTC7 Global Collapse Analysis - Appendix C
충

JA-4143
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 75
 Notes \quad Scale factor listed for each knife connection corresponds to ratio of depth to the 14.5 " deep connection analyzed
2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{\infty}{\substack{8}}$

JA-4144
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 76

2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{\circ}{4}$

JA-4145
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 77

 \qquad

 $\begin{array}{lll}\text { Notes } & \text { Scale factor listed for each knife connection corresponds to ratio of depth to the } 14.5 \text { " deep connection analyzed by Ingraffea for axial capacity and stiffness } \\ \text { No factor listed for other connection types as they are conservatively assumed to have sufficient tensile capacity }\end{array}$
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 78

2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
تू

JA-4147
INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 79
 Notes 1 Scale factor listed for each knife connection corresponds to ratio of depth to the 14.5 " deep connection analyzed by Ingraffea for axial capacity and stiffness
2 Where no beams size is indicated no member is framing into the column
3 The Information specified for each connection was taken from the latest corresponding Frankel Steel Limited steel shop drawing for that connection
WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

N

JA-4148
C5.23 INTERIOR COLUMN CONNECTION TYPE CATALOGUE - COLUMN 80

JA-4149

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
N

JA-4150

JA-4151

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{+}{8}$

JA-4155
INTERIOR COLUMN BRACING CAPACITY CATALOGUE - COLUMN 60 (NORTH - SOUTH)

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
©

JA-4158

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

JA-4161
INTERIOR COLUMN BRACING CAPACITY CATALOGUE - COLUMN 63 (NORTH - SOUTH)

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\underset{i}{\overline{0}}$

JA-4162

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\underset{\substack{\mathrm{B}}}{\stackrel{N}{2}}$

JA-4163

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{m}{6}$

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010 C6. 15

JA-4166

INTERIOR COLUMN BRACING CAPACITY CATALOGUE - COLUMN 65 (EAST - WEST)

$\frac{5}{8}$

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\underset{\substack{\mathrm{B}}}{\mathrm{N}}$

JA-4168

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{\infty}{\stackrel{\infty}{6}}$

JA-4169

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{\circ}{6}$

JA-4170

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

No

JA-4171

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

JA-4172

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

N্ভ゙

JA-4175

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

N్N

JA-4176

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

Nֻせ

JA-4177

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

Ǹ

JA-4178

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

N্®

JA-4180

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

O
é

JA-4181

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

JA-4182

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

JA-4183

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010

JA-4184

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{+}{\substack{~+~}}$

JA-4185

WTC7 Global Collapse Analysis - Appendix C
Interior Column Stability Analysis Report
12 February 2010
$\stackrel{n}{0}$

[^0]: ${ }^{1}$ Trench headers are hollow ducts located within the depth of a concrete floor slab used for the passage of electrical wiring in an electrified floor system. Had the discontinuities in the concrete floor diaphragms created by the trench headers been addressed by the addition of horizontal bracing, the WTC7's floor system would not have ruptured in the manner it did on September 11, 2001.

[^1]: ${ }^{1}$ When used in this report as part of an opinion, the word "probable" means "to a reasonable degree of scientific probability"

[^2]: WTC7 Global Collapse Analysis
 Report and Summary of Findings

[^3]: WTC7 Global Collapse Analysis

[^4]: WTC7 Global Collapse Analysis

[^5]: WTC7 Global Collapse Analysis
 Report and Summary of Findings
 12 February 2010

[^6]: Concorele fracture mode assumed to te pure shear across entie slab edoge lenght
 Conctele fracture mode assumed to tep pure shesar scogss enture slab edger iengith
 Sum of Soult Bay Tensile Fixcture. West Bay Temaite Fracture, Slab Boundary Potationa. Slab Deformation, and Slab Shear
 Remaning Energy at impact - Floor Livel Potential Energy -Total Dissipated Eeregy

 xi by geometry of impact location
 xiin Determined throign seres of AISC
 xiin Determined througn seres of A15C-prescribed calculations using expected materiai strengths
 xiv If shear at face of column > shear capacify of connection below, snear farlure assumed to occur

[^7]: WTC7 Global Collapse Analysis - Appendix B
 Floor Collapse Analysis Summary
 12 February 2010

[^8]: WTC7 Global Collapse Analysis - Appendix C Interior Column Stability Analysis Report 12 February 2010

[^9]: ${ }^{1}$ In reality, according to Dr Ingraffea's fracture analysis of double-angle the knife connections the actual bracing provided to many columns was even lower than these values.

