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In addition to the oral programme, nine poster presentations were made. 
Dr. David Williams (MSSL) presented a study of the eruption of a kink-
unstable filament in region NOAA 10696. Dr. Adam Rees (Imperial) described 
multi-spacecraft observations of a complex solar-wind-ICME interaction. The 
complexity of the ICMEs demonstrates the necessity, in order to model fully 
these phenomena, to understand the source regions, the launch process, and 
the interaction with the solar wind. Dr. Chris Goff (MSSL) described the 
eruption of a flux rope and the rising of a plasmoid by using multi-wavelength 
observations of a CME. Dr. Jackie Davies (RAL) showed multi-satellite 
observations of the near-Earth plasma sheet and flank magnetopause during the 
passage of a CME past the Earth. Prof. L. Culhane (MSSL) showed that it is 
possible for confined flares to produce a disruption of the streamer belt. 

Dr. Robert Bentley (MSSL) described recent advances in the European grid 
of solar observations, while Silvia Dalla (Manchester) presented the capabilities 
of the ASTROGRID framework, the UK's contribution to a global Virtual 
Observatory, for data analysis for Sun-Earth connection studies. A science case 
studying the geo-effectiveness of CMEs, based on solar, interplanetary, and 
geomagnetic data was demonstrated. Dr. Richard Stamper (RAL) described 
preparations for the International Heliophysical Year in 2007. The overall 
scientific objective of the IHY is to advance our understanding of the 
heliophysical processes that govern the Sun, Earth, and heliosphere; the Sun-
to-Earth connection is thus a central part of its remit. Finally, Dr. Mike 
Hapgood (RAL) presented a poster describing the monitoring of the Sun-Earth 
connection for research and applications. He stressed the importance of the 
monitoring data, and its crucial role in providing both the context for and the 
link to space-weather applications. — LOUISE HARRA & CHRIS OWEN. 

UNDERSTANDING ASTRONOMICAL REFRACTION 

By Andrew T. Young 
Astronomy Department, San Diego State University 

Introduction 

For the past two centuries, monographs 1'2--3>4 and texfbooks5>6>7>8 on spherical 
astronomy have all presented astronomical refraction in much the same way. 
The differential equation for the refracted ray is developed; series expansions 
are introduced that allow calculation of numerical values in the part of the sky 
where most astronomical observations are made; and the region near the 
horizon is usually ignored. Because these series expansions diverge before 
reaching the horizon, the few authors who treat refraction near the horizon have 
used entirely different expansions than the ones valid near the zenith, so that 
no unified picture emerges. In any case, the mathematical transformations used 
to evaluate the integrals entirely disguise the physics. 
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This standard treatment, while sufficient for the calculation and use of 
refraction tables, completely violates the spirit of Hamming's motto9 that "The 
purpose of computing is insight, not numbers". In fact, the textbook 
presentation of refraction not only hides the physics of refraction behind 
changes of independent variable, but also misleads the reader by emphasizing 
small and moderate zenith distances, where refraction behaves quite differently 
than it does near the horizon. For example, most astronomers suppose that 
refraction is always proportional to the refractivity of air at the observer, even 
at the horizon. This approximation is useful at large altitudes, but is not exact 
anywhere; nor is it even roughly correct near the horizon. The result is a 
widespread misunderstanding of astronomical refraction, exemplified by Simon 
Newcomb's widely quoted10'3-11 statement6 that "There is, perhaps, no branch 
of practical astronomy on which so much has been written as this and which is 
still in so unsatisfactory a state". The truth of Newcomb's remark is underscored 
by the recent discovery12 of both conceptual and numerical errors in 
Newcomb's textbook. Similarly, a textbook of spherical astronomy13 has 
recommended, and the US Naval Observatory adopted14, a refraction formula 
that is in error by more than Cassini's homogeneous model in every part of the 
sky. These errors result from a traditional emphasis on calculating refraction in 
a restricted part of the sky, while excluding the apparently uninteresting (but 
conceptually essential) region near the horizon. To overcome these mistakes, it 
is necessary to consider refraction more generally, paying particular attention 
to low, and even negative, altitudes; for it is only in this region that the structure 
of the atmosphere influences refraction appreciably, and effects that are present 
(but numerically negligible) near the zenith become large and obvious. 

Those whose interest is confined to numerical values will find Fletcher's 
superb review15 and Bennett's numerical comparisons16, possibly supplemented 
by some more recent discussions17'18-19 of approximate formulae, to be 
sufficient. Although calculating refraction is no longer "the foundation of 
astronomy", as Isaac Newton20 called it, it remains essential for telescope 
pointing and control systems. Furthermore, refraction is needed to determine 
airmasses in correcting photometric observations for extinction, because the 
argument of the airmass function is refracted rather than geometric zenith 
distance18. Finally, refraction errors usually set the limit of accuracy in satellite 
geodesy, and in the use of the Global Positioning System. So a good understanding 
of refraction is required in observational astronomy, astrophysics, geophysics, 
and geodesy. Traditional textbooks do not provide this understanding, so a 
clearer treatment of refraction is needed. This article is meant to fill that need. 
As overemphasis on numerical calculations has obscured the optics of 
refraction, it is helpful to begin with some basic principles of symmetry, 
geometry, and physics. 

Symmetry principles 

Reversibility: The most basic symmetry property is the reversibility of light 
rays: light follows the same path between two points, regardless of the direction 
of propagation. This allows us to trace rays from the observer backward to their 
source — an extremely useful technique in what follows. 

Path symmetry: If the atmosphere is horizontally stratified, so that the surfaces 
of constant density are concentric spheres — a good approximation — the path 
of a ray of light is symmetrical about its lowest point, where it is nearest the 
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FIG. 1 

The path of a ray (heavy line) is symmetrical about its perigee point, P. The shading 
represents the increasing density of the atmosphere toward the Earth's surface. The entire 
diagram is symmetrical about a vertical line through P, where the ray is horizontal. The 
height of the atmosphere and the curvature of the ray are greatly exaggerated. 

Earth's centre (see Fig. i).This point, P, is sometimes called the apex of the 
ray's trajectory; but as it is the lowest rather than the highest point, and need 
not even be the point of maximum curvature, the term perigee seems more 
appropriate. 

Because of symmetry, the ray makes equal angles a at the points Oi and O2 
where it crosses a level surface at a height h above the Earth's surface (see Fig. 
2). If the Earth's radius is RE, this surface has radius R = RE + h. An observer 
at either of these crossings sees an object on the ray at an altitude a above the 
astronomical horizon when looking away from P, or at a depression of a when 
looking toward P. 

FIG. 2 

The intersections Oj and 0 2 of the ray and a level surface of radius R at height h 
above the surface of the Earth, with radius RE and centre at C. Dashed lines represent 
the planes of the astronomical horizons at O] and 0 2 . 

The Observatory • Provided by the NASA Astrophysics Data System 



2006 April Andrew T. Young 

o 

FIG. 3 
Two rays (heavy curves) with the same perigee distance, seen by an observer at O.The 

entire figure is again symmetrical about the vertical line OC, but only the right half of the 
figure is labelled to avoid clutter. The observer's distance from the centre of the Earth is 
R0 = Rg + h, the radius of the circle through O.The outer circle is a level surface above 
the observer, at some larger radius R? > R0. The plane of the observer's horizon, and 
those of the local horizons at U and L where the upper and lower rays cross the upper 
surface, are shown by dashed lines. The height h is smaller than in the previous figures, 
to keep the angles reasonably small. 

This symmetry about P, where the ray is horizontal, means that no special 
method is needed to compute refraction below the astronomical horizon. If we 
can calculate the horizontal refraction from P up to O2, the refraction from Oi 
to Oo is just twice that. Then the total astronomical refraction at a depression 
of a is this double amount, plus the astronomical refraction at an altitude of a 
(i.e., the ray-bending to the right of O2) — a fact first emphasized by Bouguer21. 
That fact was used extensively in the fourth paper12 in this series. 

Rotational symmetry: If the surfaces of constant density are concentric spheres, 
the shape of a refracted ray is independent of the position where it crosses one 
of these surfaces; the rays can be rotated rigidly about the centre of the Earth. 
So suppose we rotate two copies of Fig. 2 about C, so that the points Oi and 
O2 coalesce, as at O in Fig. 3. An observer at O sees two rays with the same 
shape and the same perigee height, one (OU) above the local horizon and the 
other (OML) an equal angle below it. The angular altitudes of the rays at O 
are the angles a in Fig. 2 (left unmarked in Fig. 3 to avoid clutter). These two 
rays cross a level surface UL above the observer at equal angles b. So rays at 
equal distances above and below the astronomical horizon meet any level 
surface above the observer at equal angles. 

The equality of the angles b on the upper and lower rays is obvious in Fig. 3, 
where the symmetry of the rays is evident. In particular, one sees that the 
segment OU of the upper ray is identical to the segment ML of the lower ray. 
But if the parts of the rays to the left of O were omitted, the symmetry would 
be concealed, and it might seem surprising that the angles b are identical, 
because the ray segments OU and OL are so different in size and appearance. 

Wegener's Principle:The fact that rays with apparent altitudes of +a and -a at 
the observer both meet any higher layer at the same angle b has important 
consequences. The equality of the b values for rays symmetrically placed above 
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and below the observer's astronomical horizon means that a plot of b as a 
function of a is symmetrical about a = 0, the observer's astronomical horizon. 
So the horizon ray itself meets any level surface above the observer at a local 
minimum of b (i.e., a locally maximal angle of incidence, measured from the 
local normal). 

This fact was emphasized by Alfred Wegener22. Because of this extremum in 
incidence angle, the refraction contribution from the whole atmosphere above 
the upper layer is nearly constant within a small zone of sky centred on the 
observer's astronomical horizon. We may call this Wegener's Principle. 

Thus, the upper atmosphere plays essentially no role in the rapid variations 
of refraction with angular altitude near the horizon that distort the setting Sun. 
Therefore Wegener22 explained distorted sunsets by treating in detail only the 
refraction produced near eye level, and used standard tables for the refraction 
produced by the bulk of the atmosphere. Even though most of the atmosphere 
ordinarily produces most of the astronomical refraction, sunset distortions are 
almost entirely due to atmospheric structure near and below eye level. In 
general, Wegener's Principle lets us separate the atmosphere into a large, boring 
upper part, and a small lower region that produces interesting effects near the 
horizon. 

Geometry 

Flattening: One of these interesting effects at the horizon is the flattening of 
the setting Sun, which Kepler23 first treated quantitatively using Tycho's 
empirical refraction table. The flattening is due to a gradient in refraction at the 
horizon that raises the lower limb more than the upper limb. This refraction 
gradient is due entirely to the density gradient of the air just below the observer. 
To see why, consider first Fig. 4a, in which the lower air has constant density, 
so that the rays are straight. Just as in Fig. 3, the ray above the horizon at O 
corresponds to the ray extending to the right at M, so we can regard them as 
the same ray, rotated about C by the angle between the two rays — i.e., an angle 
of 2a. This angle is equal to the central angle OCM, because the ray OM is 
straight. 

Equivalently, if we draw the perpendicular from C to the perigee point P, the 
angle OCP is equal to a, because both are complements of angle COP. Again, 
the central angle OCM equals the apparent angular separation 2a of the two 
rays at the observer. Because the refraction of the two rays is equal, and occurs 
entirely above the observer, their angular separation outside the atmosphere is 
also 2a. Therefore the apparent separation of the rays seen by the observer at 
O is exactly the same as their separation above the atmosphere, and celestial 
objects are not flattened at the horizon. The angular magnification of objects 
at the astronomical horizon is unity. 

Curvature and magnification: Now consider a ray passing through the same 
points, O and M, but bent by refraction (Fig. 4b). The curvature of the ray 
decreases the angles it makes with the local horizons at O and M. Once again, 
the refraction above the observer's level is exactly the same for the two rays at 
O. Now, however, the refraction of the lower ray at O is larger, by just the ray-
bending 6 between O and M. Thus the separation of the rays at the observer 
is smaller than their separation outside the atmosphere by this angle, 8. 

Of course, the angular separation of the rays outside the atmosphere is still 
the central angle OCM, as can be seen from the similarity of the upper ray at O 
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FIG. 4 

a) A straight ray OPJV1 in a constant-density atmosphere above the surface E F of the 
Earth, with centre at C .The upper ray at O corresponds to the ray O U in Fig. 3; the lower 
ray O M corresponds to O M L in Fig. 3. Dashed lines again indicate the planes of the local 
horizons at O and M, and the angles a are indicated as in Fig. 2. b) A curved ray in an 
atmosphere with a density gradient below the observer. S is the centre of curvature of the 
refracted ray O P M , drawn here as the arc of a circle: note that O S is perpendicular to 
the ray O P M at O, and S M is perpendicular to this ray at M. 

and the ray to the right of M, as before. So the apparent angular separation of 
the two rays at O has been diminished by exactly 6. As the true angular 
separation of the rays at infinity is OCM, and the apparent angular separation 
of the rays at O is (OCM - 0), the angular magnification m at the horizon is 
(OCM - 6) /OCM. But this ratio depends only on the ratio of the curvature of 
the ray to that of the Earth. The curvature of the ray is i/OS, and that of the 
Earth is i/OC; so the ratio of the curvatures is OC/OS. As the angles are small 
— a fraction of a degree — the length OM is practically the same, whether it is 
measured along the level surface or the ray. So, as the arc length OM is just the 
angle times the radius, the ratio 0/OCM = OC/OS. If this ratio is k, then m = 
(1 - &).That is, if the ray curvature is half that of the Earth, k = V2 and m = Vi. 
If the ray curvature were lA that of the Earth, k = A and m = 2A. In the real 
atmosphere, k is about Vt\ so the Sun at the horizon should be flattened by about 
Ve of its horizontal diameter. (Kepler actually got Vt by interpolating inTycho's 
table.) The ratio k (or its reciprocal, K - ilk) is used in surveying to correct 
observed terrestrial altitudes for refraction. 

If the ray curvature equals the Earth's, k - I and the magnification is zero: 
the Sun is flattened into an infinitely thin line at the horizon. This actually 
occurs at the upper edge of a duct, where rays are trapped below a layer that 
produces strong bending. (Ducts will be treated in more detail later.) Such 
phenomena were noticed by Chappell24, whose photographs of sunsets at Lick 
Observatory often showed a "final singular long line, which oddly enough is 
substituted for the small tip of light that could reasonably be expected as the 
final glimpse of a bright descending sphere". To relate magnification at the 
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horizon to local atmospheric structure, we need the value of k, or the actual 
value of the ray's radius of curvature. This curvature depends on the vertical 
gradient of refractivity, and hence on the gradient of density, at the observer. 

Ray bending 

Density gradients: Consider an atmosphere at rest, in hydrostatic equilibrium. 
If the atmosphere were isothermal, the density would simply be proportional to 
the pressure at every level. Because the isothermal scale height is H = kTlmg, 
where m is the mass of an average molecule and g is the acceleration of gravity, 
His very nearly 8 km.Then the density would diminish by nearly 1 part in 8000 
for every metre of height. The refractivity in - 1) is very nearly proportional to 
the density of air, so the refractivity would also decrease by 1 part in 8000 per 
metre. 

Before computing the ray bending due to this density gradient, let us consider 
the temperature gradient required to keep the density constant. If the surface 
temperature is 300 K, we would need to decrease the temperature by 1 part in 
8000 per metre, giving a lapse rate of 300 K/8000 m = 0 • 0375 K/m, or 
37-5°C/km, to maintain a uniform-density atmosphere in hydrostatic 
equilibrium. (This would be unstable against convection, but that is of no 
concern here.) Rays in this constant-density atmosphere would be straight, as 
in Fig. 4a. The value usually given2'22 as the lapse rate corresponding to constant 
density is 34 • 2 K/km, corresponding to STP. As the value is proportional to the 
assumed surface temperature, which is usually above freezing, we can adopt 
35 K/km as a more typical value. (Newcomb's value6 of i° in 34 metres at io°C 
is too small; perhaps he meant 347km.) 

Circidar rays: Next, consider a ducted ray, which exactly follows the curve of 
the Earth. This case is easier to understand if one remembers that 'rays' of light 
are a non-physical abstraction; the closest thing to a 'ray' in reality is the central 
line of a beam of light. (This avoids the confusion that some people25'26 have 
had in trying to apply the sine-law of refraction to horizontal 'rays' — although 
such problems had been correctly treated a century earlier27'28.) Fig. 5 shows a 
horizontal beam of light, whose wavefronts are everywhere vertical. On the left, 

FIG. 5 
A collimated horizontal beam of light, following the curve of the Earth, with centre at 

C. A few vertical wavefronts are shown; the surface of the Earth is omitted. 
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the vertical wavefront is AjB^ on the right, it has moved to A2B2. Obviously, 
the upper side of the beam moves farther (from A ; to A2) than the lower, which 
goes only from Bj to B2 .The upper and lower edges of the beam traverse their 
distances in the same time, and contain the same number of wavelengths. So 
the speed at each edge must be proportional to its distance R from the centre 
of the Earth, C. But the speed of light in some medium, such as air, is inversely 
proportional to n, the refractive index of the medium. As the speed is 
proportional to R, the refractive index at each radial distance from C must be 
inversely proportional to R; so the product nR must be constant. This is the 
condition for a beam (or ray) to remain horizontal as it bends around the Earth. 

Now consider the temperature gradient required to produce this condition. 
As R is about 6400 km, nR will remain constant if n decreases by 1 part in 
6- 4 x io6 for each metre increase in height. But the refractivity (n - 1), which 
is proportional to the air density, is only about 1/3200 of n; so the density must 
decrease by 3200/6 4 x io6 m, or 1 part in 2000 per metre of height. The 
decrease in density due to the pressure gradient alone is 1 part in 8000 per metre, 
or lA of the required amount. So the temperature gradient must supply the 
remaining 3 parts in 8000. At 300 K, the temperature must increase upward by 
3/8000 of the 300 K, or 900/8000 = o-1125 degree per metre. As this gradient 
has the opposite sign from the usual lapse rate, it is a temperature inversion; 
the lapse rate is negative. 

The argument presented here is crude, but close to the truth. For comparison 
with the rough value of -o-1125 K/m just derived, Lehn29 gives -O11127 K/m 
as the critical lapse rate, Wegener22 gives -0-114 K/m, Newcomb6 gives -1170 

per km and de Graaff Hunter30 gives -0 • o66°F/foot, which corresponds to 
-o- 116 K/m. Let us adopt -115 K/km in what follows. Notice that this critical 
temperature gradient is over 17 times larger in magnitude than the 6-5 K/km 
lapse rate of the Standard Atmosphere31. That means that the standard lapse 
rate has hardly any effect on ray curvature, which is due almost entirely to the 
pressure gradient under normal circumstances. (This fact justifies the use of an 
isothermal model at the start of this section.) 

Bending and lapse rate: Now that we know the lapse rates required to produce 
straight rays and rays that circle the Earth indefinitely, we can calculate the 
bending that corresponds to any given lapse rate. The curvature of a horizontal 
ray is proportional to the vertical density gradient of the atmosphere. The 
density is inversely proportional to the temperature, so the density gradient is 
the negative of the temperature gradient or lapse rate, offset by the contribution 
of the pressure gradient. So, if a lapse rate of 35 K/km would produce straight 
rays (k = 0), and -115 K/km would produce circular rays (k = 1), a lapse rate 
of y will produce a relative curvature of 

Y - 35 
k = = (35 - y)/i5o. 

-115 - 35 ' 

Consequently, the standard lapse rate of 6 • 5 K/km corresponds to a ray 
curvature K = ilk about 5 • 3 times less than the Earth's curvature, while an 
isothermal atmosphere would produce a ratio of only 4 • 3. On the other hand, 
a convective atmosphere, with a lapse rate near 10 K/km, would give a curvature 
ratio of 6. As the atmosphere is near convective equilibrium during the day, this 
explains the typical flattening of the setting Sun. Surveyors and geodesists 
usually assume32 a still larger value, K= 7, because their observations are usually 
made on warm afternoons at moderate elevations above sea level, and the higher 
temperature and lower pressure than assumed above both decrease the 
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curvature of the refracted ray. Lapse rates in the free atmosphere are limited by 
convection to the adiabatic lapse rate, though it can be exceeded within a few 
metres of a warm surface, which inhibits convection. But there is no limit in 
thermal inversions, where lapse rates exceeding a degree per metre are common. 
An inversion gradient of 20 K/m has been measured directly33, corresponding 
to K = 133 and a radius of curvature of 48 km for a horizontal ray. 

Historical remarks: This method of calculating the relation between lapse rate 
and radius of curvature of a ray is similar in spirit to that offered by Thomas 
Young34, though he used the 'projectile hypothesis' for the propagation of light 
(i.e., the emission model of Descartes and Newton). 

The relation between the density gradient at the observer and the gradient of 
refraction at the astronomical horizon was first proved by J. B. Biot35'36. After 
mentioning the theorem (first proved by Oriani37>38, and discussed in detail 
below) that the refraction out to zenith distances of 740 is approximately 
independent of the structure of the atmosphere, Biot35 said, "But what has not 
been noticed is that there exists, ... the singularity of always being realised, in 
all possible constitutions of atmospheres, not just approximately, like that which 
we have just mentioned, but in an absolute and rigorous manner. ... Besides 
the unexpected singularity of finding an element of the horizontal refraction, 
independent of the state of distant layers, and of obtaining it, in all possible 
cases, without integration; besides the connection which results between the 
increase of refraction near the horizon and the equally observable variations of 
the refractive power starting from the bottom layer, the theorem which I am 
announcing has still other useful applications." As the magnification at the 
horizon is so obviously related to the refraction gradient, we may fairly attribute 
the magnification theorem to Biot, though he did not mention this particular 
"useful application" of his discovery. 

The relation between ray pairs that are symmetrical about the astronomical 
horizon applies to all finite differences, as well as to the infinitesimal ones 
required to demonstrate Biot's magnification theorem. Because the atmosphere 
above the observer contributes equally to the refraction of the two rays, the 
difference in refraction at these two altitudes depends only on atmospheric 
structure between eye level and the height where the lower ray is horizontal. 
This explains why the inverse problem (of determining the temperature profile 
from the refraction profile) is well-posed below the astronomical horizon, even 
though it is ill-posed above it. The history of this problem, and the methods of 
solving it explicitly, have been discussed by Bruton and Kattawar39*40. 

Refraction 

Approximations: The practical calculation of refraction always involves 
approximations. What level of accuracy is useful? Positional observations are 
rarely more precise than o • 1 arc second near the zenith, and the errors grow 
with about the square root of the airmass. So there is no practical use for 
calculations much better than a second of arc or so at the horizon, where the 
refraction is about 2000 arcsec; or a part in a thousand at moderate zenith 
distances, where the refraction is on the order of 100 arcsec. Generally, a part 
in a few thousand is the useful limit of accuracy for astronomical refraction 
calculations. 

The sine law: We have been able to find the flattening of the setting Sun 
without calculus, and without actually calculating the refraction. It is even 
possible to calculate refraction for a simple atmospheric model without calculus, 
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as Cassini41 did, before calculus had been invented (see below for details). 
Calculating refraction requires the sine law discovered empirically about 1600 
by Harriot42^43, rediscovered by Snel some 20 years later, and finally published 
in 1637 by Descartes44, who had read Snel's unpublished manuscript. Although 
Descartes, Newton, Laplace, and many others pretend to 'derive' the law of 
refraction from theoretical considerations, it is really an experimental fact that 
all theories of light must accommodate. 

The law of refraction is simply that 

sintfi 
sint/2 

= n, 

where the angles of incidence (d{) and refraction (92) are measured from the 
normal to the surface separating any two media. The constant ratio n is the 
relative index of refraction of the media. It is conventional to call the index of 
any material relative to a vacuum the absolute index of the material. This makes 
the refractive index of a vacuum exactly unity. 

The plane-parallel model: Newton45 showed that the sine law may be extended 
to a series of plane-parallel layers, so that the product n smz (where the local 
zenith distance z is the angle from the normal at any interface) is conserved 
throughout the stack of layers. As he put it, "the Sum of all the Refractions will 
be equal to the single Refraction which it would have suffer'd in passing 
immediately out of the first Medium into the last." That is, refraction in a plane-
parallel atmosphere is the same as in a single homogeneous layer having the 
refractive index at the observer. 

In this single-slab model (Fig. 6), the angle of refraction inside the atmosphere 
is identical to the observed zenith distance z0, and the law of refraction is just 

n sinz0 = sin;zt, 

where z, is the object's true (unrefracted) zenith distance; so 

z, = arcsin(n sin^0). 

FIG. 6 
Refraction in a plane-parallel slab. The observer is at O, on the surface of the (flat) 

Earth. Refraction occurs at the top of the slab of atmosphere. The dashed line is the 
extension of the observer's line of sight; the angle between it and the ray (solid) above the 
atmosphere is the astronomical refraction. 
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As the refraction r = (zt - z0), it is exactly 

r = arcsin(n shi£0) - z0, (1) 

which is clearly a nonlinear function of both n and 20 — particularly near the 
horizon, where the angles are near 900, and the sine and arcsine functions have 
their greatest curvature. 

On the other hand, near the zenith, the angles are small, and the small-angle 
approximation sinx ~ x is useful. This linearization gives 

zt ~ nz0, 

so that 

r = zt - z0 ~ n z0 - z0 = (n - 1) z0. 

Some textbooks6-8 carry the small-angle approximation one order further, 
expanding sin2r = sin (z0 + r) = sins0 cosr + cosz0 sin r. Then, since r is always 
small (so that its cosine can be set to unity), one obtains r ~ sin r = (n - 1) tan z0. 
This still hides the actual nonlinear dependence on refractivity. 

However, Delambre5 shows that tan(r/2) can be developed in a power series 
in tan20. In this series, the coefficients of the terms involve successive powers 
of {n2 - 1), which he uses for the refractivity instead of in - 1) — a minor 
modification. The pairing of higher powers of the refractivity with higher powers 
of tan^0 shows how the rule that the refraction is approximately proportional to 
the refractivity breaks down near the horizon. Furthermore, the Earth's 
curvature makes the coefficient of the asymptotic formula for refraction near 
the zenith slightly different from the (n - 1) of this plane-parallel model, even 
when the tangent approximation is usable. 

A peculiarity of the plane-parallel model is that rays with grazing incidence 
(zt = 900) at the top of the atmosphere are seen at an apparent zenith distance 
z0 = arcsin(l/n)3 which corresponds to an angular altitude of about i° 23'. Rays 

apparent horizon <£_ _̂ > SKY 
MIRAGEDSEA" 

astronomical horizon 

FIG. 7 

The form of the setting Sun in the plane-parallel atmosphere. The 'horizon surface' 
(dashed) is nearly three solar diameters above the astronomical horizon; below it is a 
superior mirage of the Earth's surface. 
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FIG. 8 
Refraction at the top of a uniform spherical atmosphere. The refraction occurs at P, a 

height H above the observer at O.The dashed line is the extension of the refracted ray OP. 

closer to the observer's horizon suffer total internal reflection at the upper 
surface of the slab atmosphere; in this zone of the sky, no astronomical objects 
are visible. Instead, a superior mirage of terrestrial objects would appear there, 
because the observer would be inside a duct. Such mirages were treated by 
Wegener22 for a more realistic model, in which a smaller refractive-index jump 
produces the reflection, and the Earth's curvature is taken into account. Not 
only would the setting Sun disappear at the top of the duct, well above the 
astronomical horizon but, in addition, the vertical tangent of the arcsin 
function at an argument of unity causes infinite compression of the solar image 
at this elevated 'horizon surface' — see Fig. 7. (Such highly-flattened images 
are in fact seen just above ducts in the real atmosphere; see Fig. 8 of ref. 46 for 
an example.) The fact that the setting Sun is visible at the actual sea horizon, 
below the astronomical one, contradicts this model, and shows that the Earth's 
surface is convex, not flat. 

Cassini's homogeneous model: It is slightly more realistic to bend the uniform 
slab to fit the curvature of the Earth (see Fig. 8). The ray O P inside the 
atmosphere of constant refractive index n is straight. In triangle O P C , the law 
of sines gives 

sin a sin; 
R R+ H 

so 

sin a = 
R sin z0 

R + H 
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The law of refraction, applied at P, is 

sin zH = n sin a, 

where zH is the local zenith distance of the ray outside the homogeneous 
atmosphere. We now have expressions for sin a and sin^y. 

But zH = a + r, where r is the refraction; so 

. / nR sin z0 \ I R sin z0 \ 
r = z"-a = avcsm{-R-nr)-arcsm{^Tir) (2) 

is the refraction for this model. Again, the nonlinear dependence on n is obvious. 
This result is exact, and is obtained with just trigonometry. 

The homogeneous model was first worked out by G. D. Cassini41, and so is 
often called 'Cassini's model', though it was also assumed by Kepler23, and can 
be traced back to Ptolemy47. Some authors4'7 call Eqn. (2), or some 
approximation to it, 'Cassini's formula'; but Cassini never published a formula, 
just a verbal description of how the model works, with a table derived from it. 

This model is surprisingly accurate out to moderate zenith distances, if we 
choose values of n and Hthat reproduce the actual conditions (refractive index, 
pressure, and density) at the observer. Ivory48 first noticed that "The simple 
hypothesis of Cassini seems hardly to have met from astronomers with the 
attention it deserves; for, if we use accurate elementary quantities in the 
computation, it will determine the refractions to the extent of 740 from the 
zenith with the same degree of exactness as any of the other methods, without 
even excepting the formula of Laplace." Radau2 also recognized its accuracy. 
Its errors (compared to the Standard Atmosphere) are only12 51 milli-arcsec at 
740 zenith distance, 17 mas at 700, and still smaller higher in the sky. The error 
remains below a second of arc out to z0 = 8i°; but beyond that, the model 
quickly becomes useless, having an error of 13 arc minutes at the horizon. 

The reduced height, H: As was pointed out above, the atmosphere would have 
constant density if the lapse rate were about 35°/km. This homogeneous 
atmosphere comes to an abrupt end where T —> o. Rather than use this rough 
temperature gradient to compute the height of the atmosphere, it is more 
instructive to invoke hydrostatic equilibrium. The pressure at the bottom of the 
atmosphere is the weight per unit area of the material, i.e., 

po = p0gH, 

where p0 is the density at the surface and g is the acceleration of gravity; so 

H = po/p0g . 

This expression for H is equivalent to the earlier version involving 
temperatures, if one assumes the ideal gas law. The "height of the homogeneous 
atmosphere" is a rather cumbersome phrase; Radau's term2 "reduced height" 
is more concise. This height, which we first encountered in calculating ray 
curvatures, appears often in refraction theory, even in non-uniform atmospheres. 

The refractive invariant 

Geometric invariants: In the plane-parallel case, simple geometry relates the 
angle of refraction at one surface to the angle of incidence at the next interface: 
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these angles are equal. Within a homogeneous layer, the ray is straight, so the 
value of sinz remains constant; we may call sin z a geometrical invariant within 
such a layer. As the refractive index n is also constant, the product {n sin 2) is 
conserved within each layer. But the law of refraction makes (72 sin 2) the same 
on both sides of each interface; so {n s'mz) is conserved throughout the whole 
plane-parallel atmosphere. We may call it the refractive invariant for the plane-
parallel model. 

Refraction in a spherical atmosphere still involves a conserved quantity, but 
it is not (n sinz), because the curvature of the atmosphere makes z change along 
a straight ray within a layer of constant n. The angles at successive interfaces 
differ, even though the intervening layer is homogeneous. We need a geometric 
relation between these angles that takes account of the layer's curvature. So, 
what is the geometrical invariant for a straight ray in a curved layer? In Fig. 9, 
the length p of the perpendicular from the centre of the Earth C to the ray is 
(R sinz) at any point P on the ray, if z is the local zenith distance of the ray at P. 
Physicists like to call p the impact parameter, it is our required geometric 
invariant. 

Refractive invariant: Now consider a single refraction at the top of a uniform 
layer with refractive index n. In Fig. 10, the ray is refracted at P13 where the 
local zenith distance on the vacuum side is z1.The law of refraction tells us that 
z2, the angle of refraction inside the atmosphere, is given by 

n sin22
 = sin 2^. 

If we multiply this equation by Ru the radius of the refracting surface, we have 

nRx sinz2 = Rx s in^ ; 

FIG. 9 

The geometrical invariant is p = R sinz along an unrefracted ray, SPN. The local 
zenith distance is 3 at any point P , a distance R from the centre of the Earth, C. 
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F I G . 10 

The refractive invariant is nR sinz along a refracted ray, SPPjN, in a uniform 
atmosphere. The local zenith distance at point P is z. Outside the dashed surface, the 
refractive index is unity; inside, it is n. The ray is refracted at P j , where the angle of 
incidence is zy, and the angle of refraction is z^-

but (Rx sins'!) is justp, the geometric invariant for the incident ray. So we have 

nRx sins2
 = P-

And of course a geometric invariant applies to the refracted part of the ray, as 
well: the product (R sins) remains constant along the refracted ray inside the 
atmosphere. But then so does (nR sins), if n is constant; and if (nR sinz) = p 
at P l 3 it must remain equal to p inside the refracting atmosphere. Thus 
(nR sins) = p all along the ray, both inside and outside the atmosphere. This 
is the refractive invariant for the spherical model. 

If we add a second refracting surface inside the first, the same argument can 
be repeated, just as it was for the plane-parallel atmosphere by Newton (see 
Smart8 for the details). The geometric invariant (R sinz) in each spherical layer 
takes the place of the geometric invariant (sins) for each plane-parallel layer, 
but the rest of the argument remains the same as before: the law of refraction 
allows us to propagate the refractive invariant from layer to layer, and to show 
that it remains conserved throughout the whole atmosphere, no matter how 
many layers there are. So the product (nR sins) remains constant all along the 
ray, even in the limit of an infinite number of refractions; (nR sin s) = p is the 
refractive invariant. It involves only geometry and the law of refraction. 

Applications: If we know the refractive invariant for a ray, we can calculate its 
local zenith distance z at any distance R from the centre of the Earth, provided 
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we have an atmospheric model that supplies the refractive index n as a function 
of R. For, if nR sin 2 = p, we can solve for sinz = pl(nR), if p, n, and R are all 
known. A particularly convenient use of the refractive invariant is to find the 
radius Rhor where a ray is horizontal. At that point, z = 900, sin z = 1, so we have 
nRlwr = p. This implicit equation for Rhoris easily solved numerically by assuming 
that the product nR is a locally linear function of R. 

Conversely, if we know where a ray is horizontal, we immediately have its 
refractive invariant, and can calculate its slope at every point in the atmosphere. 
For example, the horizon ray must be horizontal where it touches a level surface, 
such as the sea; this allows calculation of the (refracted) dip of the sea horizon 
seen from any higher elevation. If the values of n and R at the observer are n0 

and R0, and the refractive invariant for the ray is the nR product at the sea 
surface, we must have n0R0 sin#D = (nR)surfacsi from which sinz0 and hence s0, 
the zenith distance of the horizon at the observer, can be found. Of course, z0 

is just 900 plus the dip of the horizon; so sin z0 = cos d, where d is the dip. The 
refractive invariant has the important consequence that images of astronomical 
objects are necessarily single and erect above the astronomical horizon. 
Conversely, the inverted and multiple images of mirages are possible only below 
the horizon. This theorem was first found by Biot49, though it has been 
repeatedly forgotten and rediscovered; Meyer50 gives a simple proof by 
contradiction. 

Suppose two different rays from an object point P could arrive at the 
observer's eye at O from above the horizon. As the observer would see the same 
object in two different directions, the rays have different zenith distances at O; 
so they have different refractive invariants (as nR is the same for both rays at 
the eye). However, if both rays connect O and P, the one with bigger slope at 
the eye must have a smaller slope somewhere else, as the mean slopes of the 
two rays must be equal. But nR remains equal for both rays at every level in the 
atmosphere; so the ray with the greater slope at the eye has the greater slope 
everywhere. As it can never have the smaller slope required to reach P, there 
cannot be two rays above the horizon. 

We can avoid the contradiction if one of the rays passes through a range of 
heights that the other does not — either above the height of P, or below the 
eye at O. In either case, the ray must become horizontal at some limiting height, 
where nR equals the ray's refractive invariant. This can only happen for 
astronomical objects if that range of heights is below the observer; then the ray 
must be horizontal somewhere below eye level. The symmetry of rays about 
their perigee points means that this ray arrives at the observer from below the 
astronomical horizon: it belongs to the inferior mirage. (Terrestrial objects can 
have the second ray horizontal above the observer; this ray is ducted, and 
belongs to a superior mirage.) A similar argument shows that the single image 
above the astronomical horizon is erect. For, if the image of an object is to 
appear inverted, rays from the top and bottom of the object must cross, 
somewhere between object and observer, to reach the eye in the inverted order. 
Then the crossing point takes the place of P in the above argument; as such a 
point cannot exist, the rays cannot cross, and the image must be erect, if it is 
above the horizon. But of course the intersection can occur if one of the rays 
arrives from below the astronomical horizon; and in fact mirages of 
astronomical objects do occur there. Evidently the refractive invariant gives a 
special significance to the product nR. If we plot nR as a function of height for 
any atmospheric model, we can determine the local zenith distance of any ray 
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whose refractive invariant is known. Clearly, a ray cannot penetrate into regions 
where nR exceeds its refractive invariant, for that would require sin z > 1. 

Dip diagram: Plotting nR as a function of R or height in the atmosphere 
produces a useful diagram, whose properties were discussed in an earlier 
paper51. It allows a simple graphical determination of z along a ray. Because 
(nR)horizon /(nR)observer = s m zhorizon *s t n e c o s ine of the dip, this is sometimes called 
a dip diagram. Any ray can be represented as a horizontal line at nR = p in the 
dip diagram; it intersects the sloping curve that represents the atmospheric 
model at the point where the ray is horizontal, so that sin^r = 1. The ray is 
confined to heights where nR > p, so that sinz < IJ that is, the ray cannot cross 
the model curve. Ordinarily, n decreases so slowly with increasing R that the 
product nR increases monotonically. However, as was mentioned above, the 
condition for a ray that follows the Earth's surface is (nR) = const., which means 
the curve representing the atmospheric model is locally horizontal in the dip 
diagram. This occurs if the dip diagram has a local maximum or minimum. 

Ducting: Because a ray must have p < nR, a local minimum in the dip diagram 
creates a region at smaller heights where rays with p > (nR),nin can be trapped 
(see Fig. 11).This is a duct. For observers within the duct, celestial objects are 
blocked by a zone of sky centred on the astronomical horizon. The angular half-
width Az of the forbidden zone of sky is given by cos(A2) = (nR)minl(nR)observer. 
The symmetry of this 'blank strip'22 about the astronomical horizon is due to 
the equality of the angles b in Fig. 3; see Fig. 8 of ref. 46 for photographs of an 
example. This symmetry can also be regarded as a consequence of the symmetry 
of the sine function about 900: equal angles above and below the astronomical 
horizon have the same value of sin z. 

In the schematic dip diagram of Fig. 11, the heavy curve ABCDE shows the 
run of nR as a function of height in the atmosphere. The duct extends from the 
point A at height hx to E at h2, where the horizontal line marked pmm is tangent 
to the local minimum in nR. All horizontal rays between these two heights are 
trapped in the duct, because p = nR sin 2 for a ray must be less than nR in the 

nR 

Height 

F I G . 11 

A schematic dip diagram for a duct. The model atmosphere is represented by the 
curved line ABCDE; the duct extends from hx to h2 in height. 
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atmosphere at every height. The dashed line AE has the minimum refractive 
invariant, pmjn, that can be ducted. A ray such as BD within the duct oscillates 
between the heights of B and D; at those heights, the ray is horizontal, because 
(Pray = Pmodel) impl ies SU1Z = I. 

The ray C is horizontal at the height where the duct has maximum angular 
width, i.e., at the height hmax where nR has a local maximum. If the value of nR 
at C is pmax, the angular halfwidth of the blank strip as seen by an observer at 
hmax is arccos(pmin/pmax)i this corresponds to the ray AE. When the ray BD 
passes through this height, its angular slope is arccos(pBD/pmax). For more 
detailed discussion of dip diagrams, see ref. 51. 

The refraction integral 

The differential of refraction: Obviously, the refractive invariant contains 
enough information to calculate the slope of a ray at every height in an 
atmosphere, if the run of nR with height is known: the refraction is just the total 
change in slope of the ray. Knowing the slope at every point, we can write down 
the differential equation for the refraction. The only problem is that the dip 
diagram (or its equivalent, the model atmosphere) gives the slope of the ray with 
respect to the local zenith, whose direction changes along the ray; see Fig. 12, 
which shows the differential triangle at a distance R from the centre of the Earth. 
The zenith distance of the ray at R is z, and at R + dR, it is z + dz.The differential 
of refraction is 

dr = dz + dd, 

FIG. 12 

The differential triangle for refraction. The heavy curved line represents the refracted 
ray, with zenith distance z at a distance R from the Earth's centre C, and zenith distance 
z + dz at R + dR. The element of path length ds subtends an angle d6 as seen from C; d9 
is the change in direction of the local zenith in the interval ds. 
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where dd is the differential change in the direction of the local zeniths, i.e., the 
angle at the centre of the Earth subtended by the element of path length 
ds. (If the ray follows the curve of the Earth, so that z remains constant, dr is 
just dd.) 

The tangent of the ray's altitude is the cotangent of its zenith distance, so the 
little differential triangle gives 

dR 

Rdd cot z. 

We will shortly need dR/R, so we rearrange this equation: 

dR d6 

R tanz 

Now use the fact that the refractive invariant (nR sinz) is constant, so that its 
logarithmic derivative is zero: 

dn dR d(sin z) 
— + "5" + —: = °> 
n R smz 

or 
dn 
— 
n 

dR 
+ TT + 

R 

cosz 
dz — 

sin z 

dn 
— 
n 

+ 
dR 

R 

dz 
= 0. 

tan z 

Then combine the value of dR/R = dd/tanz with the fact that dd = dr - dz, so 
that dR/R = (dr - dz)/tan z, and substitute this into the last equation: 

dn dr - dz dz 
— + + = 0. 
n tanz tanz 

Finally, cancel the two dz terms, and solve for dr: 

, dn 
dr = - tan z — • 

n 

Physically, the minus sign occurs because n decreases as R increases. The 
factor tan z shows how sensitive refraction is to the local zenith distance along 
the ray: where the ray is horizontal, tan z becomes infinite. Although this infinity 
requires transforming dr to handle horizontal rays, the present form with tanz 
is the most informative expression for the refraction differential. 

Integrating the refraction: If we leave the differential of refraction in the form 
just derived, the whole refraction is just 

r = 
1 

dr = -
'i dn 

tanz — 
n„ n 

"0 dn 
tanz — 

1 n 

where n0 is the value of the refractive index at the observer, and 1 is its value 
above the atmosphere. 

T h e independent variable here is n, the refractive index. Note that n varies 
only from 1 0000 in space to not quite 1-0003 a t s e a level. Because the 
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refractivity (;? - 1) is very nearly proportional to the density p of the air, 
dn °c dp. So 11 is a linear function of the density. It is instructive to plot the 
refraction integrand as a function of n, bearing in mind the linear relation 
between n and density. When we do so, we find that the refraction integrand (and 
hence the refraction itself) behaves very differently in different parts of the sky. 

Small zenith distances: Fig. 13 shows the refraction integrand for the 
Standard Atmosphere3 1 , for a few zenith distances up to 60 degrees. In this 
range, the refraction is less than 2 minutes of arc, so the ray is nearly straight. 
As 2 minutes is 1/1800 of 6o°, a straight-line approximation to the ray should 
nearly meet the required degree of accuracy out to this zenith distance. If we 
neglect ray curvature entirely, the local zenith distance of the ray at any level 
is independent of the atmospheric structure. In this approximation, t a n s 
can be computed from the geometric invariant p = R sinz. Then at height 
h, (RE + h) sins.,, = RE sins,, (assuming the observer at the Earth 's surface); so 

Rf 
sins,, = RE + h sms„. 

But for small z, s i n s ~ tan. 

t a n s 

s; so we can also write 

h RE + h tan s„ 

Fur thermore , the atmosphere is so shallow that h -4 RE everywhere: there is 
practically no refraction above 100 km height, so hlRE < 1/64. This means that 
t a n s , which provides most the variation of the refraction integrand, hardly 
varies by 1% across Fig. 13. Because the integrand is so nearly constant, we 
can replace both n and t a n s with their average values, leaving only dn inside 

1.00000 1.00005 1.00010 1.00015 1.00020 1.00025 
Refractive index 

FIG. 13 

The refraction integrand for the Standard Atmosphere, for zenith distances at the 
observer from 30 to 60 degrees. The Earth's surface (at the right edge) corresponds to 
n = 1 '00027, a n d the top of the atmosphere (left edge) to n = 1 • 00000. 
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the integral. The refraction becomes simply 

<tanz> 
<n> 

'"<, , , N <tansr> 
dn = (n0 - 1) -

1 <n> 

The mean <n>, which is in0 + i)/2 ~ 1 00014, obviously corresponds to the 
atmospheric level where the density is half the surface density, about 6 • 7 km 
above sea level. If the integrand were a straight line, the mean <tan£> would 
correspond to this same level. But Fig. 13 shows that the integrand is slightly 
concave downward, because of the nonlinear dependence of A, and hence z, on 
density; so the mean <tanz> is smaller, and corresponds to a higher level. This 
effective height turns out to be the reduced height H ~ 8 km. At that height, 
the mean value <tan#> = tan 2^ is 

RE 
tanzH = - +H ianz0. 

So the refraction at small zenith distance is well represented by 

*-=(^TH)(^Tr)("--I)Ian2" 

or just 

r = (;^T7/)(n^ l) tan^ 

if we neglect an error of 1 part in 7000 and set <n> = (n0 + i)/2 to unity. This 
approximation represents the refraction of the Standard Atmosphere within 
0 • 1 arcsec to 48 • 8° zenith distance, and within 1 second to nearly 68°. The 
coefficient {n0 - 1) [RE /(RE + H)] is often called the refraction coefficient or the 
refraction constant. Notice that it differs by the factor RE/(RE + H) from the 
coefficient (n0 - 1) in the tangent approximation for the plane-parallel 
atmosphere. This curvature correction factor is less than unity by about HIRE 

~ 1/800 = 0-00125, which is larger than the acceptable relative error; so it 
must be taken into account. 

Physically, the curvature of the Earth decreases refraction (compared to the 
flat case) because the change in direction of the local vertical along the ray 
reduces angles of incidence, and hence local values of tan z, in the upper 
atmosphere. The curvature correction factor in <tan,z> represents the average 
effect of the tilted verticals along the ray relative to the observer's zenith. The 
greater the reduced height, the smaller is the refraction for a fixed n0. For 
example, if we raise the temperature of the atmosphere, we must increase the 
surface pressure to keep p0 and hence n0 fixed. This requires a larger mass of 
gas above the observer. At every R > RE, there is now a greater density than 
before, so n is (slightly) higher. This makes sinz and hence tanz smaller; so the 
left side of the integrand (corresponding to the upper atmosphere) moves 
downward in the plot, decreasing the area under the curve (i.e., the refraction). 
The warmer atmosphere has a bigger reduced height, H, and its curvature 
correction factor REI{RE + H) is correspondingly less. On the other hand, if we 
keep both the temperature and pressure at the observer fixed, so that the 
refractivity at the observer stays fixed, changes above the observer are 
constrained by hydrostatic equilibrium. We can move gas up and down by 
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The refraction integrand for adiabatic and isothermal atmospheres, at 6o° zenith 
distance. The top curve in Fig. 13 would fall between these; note the greatly expanded 
vertical scale here. The dashed vertical line at n = 1 -oooo marks the lower limit of the 
refraction integration. 

altering the temperature profile, but the total mass of gas in the column, and 
the reduced height, H, remain the same. Then changes in the integrand in one 
region are nearly balanced by opposite changes in another region, and the 
refraction is almost unaffected. 

Fig. 14 compares the integrands for isothermal and adiabatic atmospheres 
with the same conditions at the observer. Both atmospheres have the same 
temperature and pressure at the bottom; the adiabatic model has a lapse rate 
of 10 K/km.The bottom part of the adiabatic model, at the right and centre of 
the figure, is cooler and denser than the isothermal model at the same height; so 
nR is larger, and consequently sins and tans- are smaller in this region for the 
adiabatic model. As tans is the dominant variable in the integrand, the adiabatic 
integrand lies below the isothermal one in this part of the diagram. But, because 
the upper parts of the adiabatic model are much colder than the isothermal one, 
the layers of lowest density are much closer to the surface of the Earth: the 
adiabatic model terminates below 30 km. In these low-density layers, at the left 
side of Fig. 14, n is very nearly unity, and R dominates the nR product. So in 
this region, sins and tans are larger for the adiabatic model than for the 
isothermal one. The two curves cross where the density is about Ve, of the surface 
density (n ~ 1 00004). The areas between the two curves are almost exactly 
equal on either side of this crossing. That is, the areas under the two curves — 
i.e., the refractions in the two models — are almost exactly equal. If the average 
ordinates of the two parts were the same, the cancellation produced by the 
crossover would be exact. Near the zenith, the integrands are in fact nearly flat, 
and this cancellation is nearly perfect: all models give almost exactly the same 
refraction, regardless of the temperature profile. Even at 6o° zenith distance, 
the average ordinates on the two sides of the crossing differ by only about 1% 
(note the expanded scale of Fig. 14). So the imbalance is very slight here: the 
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refraction is about 98 seconds, but the two models differ by less than 0 • 002 
arcsec — about 2 parts in io5 . 

Moderate zenith distances: However, at larger zenith distances, the disparity 
between the upper and lower parts of the atmosphere rapidly increases, because 
of the growing change of t an z along the ray within the atmosphere. At z0 = 850, 
the curves for the adiabatic and isothermal models cross at lanz ~ 9, and the 
average ordinates for the left and right portions are about 8 and 10 — a 
difference about 20 times larger than at 6o°. The mean refraction is 9 • 6 arc 
minutes; the difference between the models has risen to nearly 4 arcsec, about 
7 parts in io 3 , which is quite significant. Fig. 13 shows that at large zenith 
distances, the decrease of tan z in the upper atmosphere gives appreciable slope 
to the integrand, especially at the upper left corner of the curve, which is concave 
downward. The unequal weighting of upper and lower regions when this slope 
is appreciable makes the refraction sensitive to atmospheric structure: a density 
gradient in the lower atmosphere, where tan 2 is larger, contributes more to the 
refraction than the same gradient higher in the atmosphere. However, this 
sensitivity is constrained by the refractive invariant. A change in atmospheric 
density at a given R makes a proportional change in the refractivity in- 1); but 
that is, at most, only a part in 3000 of n itself, which appears in the invariant 
nR sin z. Thus , changes in refractivity at a given R produce changes in sin z that 
are thousands of times smaller. As tan z is less than 10 times larger than s inz 
at 840 zenith distance, the changes in tans: also remain small until t a n z / s i n z = 
secz appreciably exceeds 10. 

Series expansions: In this region, where the sensitivity to atmospheric structure 
is small, it is tempting to extend the t a n z approximation, which works well near 
the zenith, to a power series in t a n s . Delambre5 gives numerous examples of 
such developments, based on trigonometric identities. The more usual 
approach1 '2 '6^7 '8 is that introduced by Lambert5 2 : first, replace the tan z in the 
integrand by s inz A i - sin2 z . Then , replace sinz by its equivalent plnR by 
using the refractive invariant p = (n0R0 s i n z j , so that the refraction integral 
r = j['° tan 2 4f becomes 

["» P dn 
T ~ ) 1 -<{nRy-p7- n 

which of course looks much more intimidating if we write out p in terms of n0> 

R0, and sin20 , as is customary: 

r = 
n0 R0 sin z0 dn 

n ^i(nR)2 - (n0 R0 sin20)2 

The final step is to expand the square root in the denominator by using the 
binomial theorem, and introduce some closed-form relation between n and R 
to express the series terms as functions of a single variable. T h e expansion 
produces very complex expressions even for simple atmospheric models. The 
series, involving powers of a 'small quantity' such as [(H/R) tan2 z], can be 
integrated termwise, but even then the individual terms involve integrals that 
must themselves often be approximated by series expansions. This process 
allows the numerical calculation of refraction tables out to zenith distances of 
about 820, but at the expense of mathematical abstractions that obliterate all 
traces of the physics. Some people have carried it to ridiculous extremes: 
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Bauernfeind53 extended the series to the 28th power of sec^. Worse yet, the 
series expansions are only semi-convergent, as was first pointed out by Ivory54. 
Unfortunately, the concept of semi-convergence had only been introduced a 
dozen years earlier by Legendre5 5 , and Ivory's warning escaped the notice of 
most astronomers. 

Strictly speaking, these Lambert series diverge at every zenith distance — not 
just at the horizon, where t a n z blows up. The real difficulty lies in the 
coefficients of the terms, which increase like factorials with the order of the 
term. So, no matter how small tans: may be, the higher terms eventually increase 
without limit: the series diverges. Because only odd powers of the small 
argument appear in the series, the unwary often suppose that convergence is 
rapid. This odd-power property is sufficiently un-obvious that Bradley 
laboriously established empirically56 that the coefficient of tan2 z is negligible. 
But it is simply a result of symmetry: if the refraction is regarded as a continuous 
function through the zenith, with zenith distances counted positive on one side 
and negative on the other, it is obvious that the refraction must also change sign 
on passing through the zenith, where it is zero. Therefore the refraction is an 
odd function, and can involve only odd powers of t a n z , which itself is odd. 
What makes the series useful numerically is its alternating signs (due to the 
binomial expansion of a negative power — the square root is in the 
denominator) , which allow truncation after a few terms, so long as t a n z is not 
too large. Then the partial sums are accurate enough for practical work, which 
only requires three or four significant figures. But, as successive terms decrease 
more and more slowly, many are required for high accuracy, even at moderate 
zenith distances. (For example, two terms approximate the refraction of a 
realistic atmosphere considerably less accurately12 than does the Cassini model, 
at all zenith distances.) And expansions fail entirely around a zenith distance of 
820, where the smallest term in the series becomes unacceptably large. 

Oriani's theorem 

Evidently, this is not a very instructive approach to the problem. However, 
it does produce one remarkable and well-known result, which can be neatly 
demonstrated7 by setting RIR0 = 1 + 5, so that 5 is just height measured in Earth 
radii. Note that s is always small: it is 0 • 01 at 64 km height, and we can neglect 
the refraction above 5 = 0-02. So, set R = (1 + s) R0 in the refraction integral, 
and keep only the first-order terms in s, so that (nR)2 ~ (1 + 25) (nR0)

2. Then, 
cancelling R0 factors in numerator and denominator, we have 

na sin z0 dn 

J1 n \n2 + in2s - {n0 sin z0)
2 

The argument of the square root can be rewritten as 

/ 2 rfi s \ 
{n2 - n2 sin220) + 2;z2s = (n2 - n2 sm2z0) 1+ 

y n2 - n2 sin2 z0 J 

then the refraction integral becomes 

n0 sinz0 dn 

1 n \n2-n2sm2z0 V n2 - n2sin2z0 
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o Now, expand the expression in large parentheses on the right, using the 
binomial theorem; keep only the first-order term in s, and integrate the resulting 
terms separately: 

n0 sinz0 dn 

n ^ln2 -n2 sin2z0 

snn0 sin z0 dn 

in2 - n2
Q sin220)3/2 

The first term is an elementary integral, whose value, 

arcsin(w0 sin20) - z0, 

is exactly the refraction (Eqn. i) for the plane-parallel atmosphere. Thus the 
second integral can be regarded as the first-order correction for atmospheric 
curvature. This correction term can be evaluated by setting both n and n0 to 
unity in its integrand. (The error made is of higher order, as this term is already 
of order s.) Then the correction term becomes 

sm z0 

COS3Z0 

0 s dn. 

Next, we use the Gladstone-Dale rule that the refractivity (n - i) is proportional 
to the density, p. But if (n - i) = cp , then dn = c dp. This converts the correction 
term to 

sm z0 \Po , 
c — s dp. 

cos3z0 

Finally, integration by parts gives 

- c 
sin^o 

COS3^D 

p ds, 

where smax is the largest normalized height that contributes appreciably to the 
refraction — essentially, the top of the atmosphere. But this integral of density 
through the whole atmosphere is just the mass of a unit column; so this last 
integral is proportional to the surface pressure at the observer, or to the ratio 
HIR0. Fur thermore , the factor sin^0 /cos3 z0 = t anz 0 sec2 z0; and if we replace 
sec2 with (i + tan2) , this factor is just ( tan20 + tan3 20) .The plane-parallel term 
can also be expressed as a sum of tangent and tangent-cubed terms, if we expand 
its arcsine in a Taylor series and neglect higher powers of the refractivity. So 
the sum of the two terms is of the familiar form 

r = A tanz0 - B tan3 z0, 

where the coefficients A and B involve only conditions at the observer and are 
independent of the density distribution. This result was first proved by 
Oriani37>38, who stated that "This expression depends on no hypothesis about 
either the law of heat in the atmosphere or about the density of the air at various 
distances from the surface of the Earth". Laplace1 provided a more rigorous and 
complete proof of Oriani's theorem. 
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One important practical consequence of Oriani's theorem is that all possible 
atmospheres in hydrostatic equilibrium produce the same astronomical 
refraction, up to the zenith distance where the tan5 z0 term becomes appreciable. 
(For example, it explains the near-perfect compensation shown in Fig. 14.) 
Therefore it is convenient to derive the exact expressions for the coefficients A 
and B from (for example) Cassini's model — as Ball7 does. This limiting zenith 
distance is typically in the range 700 to 740, depending on the size of the tan5 z0 

term and the required accuracy. Oriani's theorem explained why all previous 
refraction calculations had given very similar results out to about 740 — a fact 
that had puzzled many earlier workers. 

Of course, the tan5 z0 term does depend on atmospheric structure, so different 
models diverge rapidly beyond this limit. Because tan z is inversely proportional 
to altitude a at large zenith distances, the initial differences are approximately 
inversely proportional to a5. So the divergence increases by a factor of 3 
between 700 and 740, and is still faster beyond that. In fact, one sees from the 
derivation of the series expansion that successive terms involve integrals of 
consecutive powers of 5 with respect to n\ but because dn is proportional to dp, 
these integrals are all of the form 

sJ dp, j = 1,2,3,..., 

i.e., they are successive height-moments of the density distribution. 
In an exponential atmosphere, dp oc exp(-j) ds, and these moments become 

essentially 

" xJ e~x dx = j \ 
0 

(Indeed, it was while studying the refraction integral for an exponential 
atmosphere that Kramp57 developed the theory of factorials and introduced the 
function we know today as the T function.) Hydrostatic equilibrium forces the 
real atmosphere to be nearly exponential, so the coefficients of Lambert's series-
ejipansion terms increase nearly factorially. This is why the series diverges for 
all zenith distances. As the tan5 z0 term depends on the second moment of the 
density distribution, it is similar for all realistic model atmospheres. This term 
depends mainly on the average lapse rate in the troposphere, so the differences 
in refraction between 700 and 8o° for different models depend almost entirely 
on this mean lapse rate. The similarity of the second moments of all realistic 
models means that their refractions differ only a little out to 8o° zenith distance, 
somewhat beyond the range where Oriani's theorem guarantees complete 
independence from atmospheric structure. 

Refraction near the horizon 

Beyond Oriani: The independence of refraction from atmospheric structure, 
in the region where Oriani's theorem applies, is due to the negligible variation 
in tanar along the ray. At moderate altitudes, tan z is nearly constant (cf. Fig. 
13), so the refraction depends on a nearly equally-weighted average density or 
temperature gradient through the whole atmosphere. But near the horizon, tan z 
is large and nearly equal to sec z - i/cos z = i/sin a ~ i/a. So the tan z weighting 
along the ray changes significantly if the local altitude a changes along the ray. 
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The transition from small to large variation of tan s along the ray can be found 
from the refractive invariant. 

How near the horizon is 'near'? The refractive invariant is (nR) s ins , so 
fractional changes in s i n s correspond to similar fractional changes in (nR). 
Now, sin z = cos a ~ I - a2l2, for small a; so the upper and lower parts of the 
atmosphere are equally weighted if their fractional difference in (nR) is 
comparable to a2li. Because the refractivity is less than 3 x i o - 4 , changes in 
(nR) are mostly due to changes in R. Half the mass of the atmosphere is above 
the level where the pressure is half the surface pressure, near 6 • 7 km height. 
This corresponds to a fractional change in R of about 1 part in io 3 ; but the 
fractional change in n there is only 1 • 5 x 10-4, nearly an order of magnitude 
smaller. So the lower atmosphere becomes disproportionately important when 
a2l2 ~ 10-3, corresponding to a ~ 0-05 radians or 2-6°. This agrees with the 
altitude where nocturnal inversions are found to become important12: numerical 
integrations show large differences in refraction among different models only 
below 2 or 3 degrees altitude. 

Fig. 15 shows how t a n s blows up in the lowest layers near the horizon. The 
top two curves, for altitudes of 1° and 2°, have altitudes below the critical value 
just calculated; and it is just these that show a nonlinear increase in t a n s in the 
lowest layers (right-hand side). In this zone of sky, t a n s is much larger near the 
observer than in the upper half of the atmosphere. In fact, the refraction 
integrands all have nearly the same values at the left side of the figure; they differ 
by only a factor of 2 at the tropopause. The upper atmosphere contributes a 
nearly fixed amount to the refraction at all altitudes near the horizon. This 
behaviour follows from the refractive invariant: s ins > o- 995 at the observer for 
all these curves, so the local zenith distance depends more on R than on s0 above 
the height where R0IR > 0-995 (about 32 km). This is another example of 
Wegener's Principle: the horizon ray meets the tropopause (or any surface 
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The refraction integrand for the Standard Atmosphere, for zenith distances at the 
observer from 85 to 89 degrees, (cf. Fig. 13.) 
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Fig. 16 

The refraction for ihe Standard Atmosphere and three other polytropic models 
compared. All models have the same pressure and temperature at the observer; only their 
lapse rates differ. 

overhead) at a local maximum value, so nearby rays also meet that surface at 
almost the same angle, and have similar refractions at greater heights. So the 
heavily-weighted lowest layers dominate the refraction at low altitudes. And the 
lapse rate in the boundary layer becomes more and more important in the total 
refraction (not just its derivative, as Biot's theorem tells us) as we approach the 
horizon12. Fig. 16 compares low-altitude refractions for the Standard 
Atmosphere and a few other canonical models with constant lapse rates. 
Because horizontal-ray curvature depends on the lapse rate, Biot's theorem gives 
the slope of each curve at the horizon; the zero slope of Cassini's model there 
can also be regarded as an example of Wegener's Principle. Oriani's theorem 
forces the curves to converge at the left side of Fig. 16. These curves, which 
meet only at the zenith, form a one-parameter family that illustrates many of 
the principles discussed above. 

Refraction below the horizon: Between the astronomical horizon and the sea 
horizon is a zone in which rays are horizontal somewhere below eye level. This 
zone includes the whole disc of the setting Sun for observers above 220 m in 
the Standard Atmosphere, and even for lower observers with thermal inversions. 
Below the astronomical horizon, the refraction is dominated by the perigee 
layer, where the ray is horizontal. In this region, we invoke Wegener's Principle 
to separate the refraction contributions of the layers above and below eye level. 
To avoid problems with the infinite value of tan z at the perigee point, it is easier 
to work with ray bending in this lower region than with the refraction integral 
in the whole atmosphere; Wegener's principle shows that the upper part 
contributes only a small variation with altitude. If the ray were straight (cf. Fig. 
4a), the thickness t of the layer between the heights of the observer and the 
perigee would be just O C - P C or R ( i -cos a) ~ Ra2/2. If the lapse rate in this 
layer is constant, the ray is nearly a circular arc; then it can be shown22>51 that 
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the same result applies, if we use an effective curvature llReg corresponding to 
the difference in curvatures of the ray and the Earth: 

Reff R OS 

(see Fig. 4b). In terms of the ratio of curvatures k = OC/OS used in the 
discussion of magnification, the effective radius of curvature is 

Reff = R/(i-k). 

Then 

D / Ra2 

t = Reff (1 - cos a) ~ — • 
'• 2(1 - k) 

The ray-bending 6 produced by the layer is just k times the central angle OCM, 
which can be found from the distance from O to the perigee point P: 

O P = OC sin(OCM/2) ~ OC (OCM/2). 

But OP can also be found from the formula for the distance to the horizon51 

O P = S2tR/(i - k) i 

so, equating the two expressions for OP, solving for the central angle OCM, 
and multiplying by k to get #, we have the refraction contributed by the layer 
of thickness v. 

9 = 2k 
(1 - k)R 

This is very large when k is close to unity. For example, a layer with a lapse rate 
of-o- 1 K/m has k = 0-9; a i-m thickness of this layer contributes 10 minutes 
of arc to the refraction of a ray tangent to its lower surface. And because of the 
square root, even one centimetre of this layer contributes a minute of arc of 
refraction. As heat conduction forces the lapse rate to be continuous, there is 
always a place at the top of a duct where k —> 1 and the refraction becomes 
infinite. This is actually seen by an observer above the duct: the Sun flattens 
out into a line above the duct, where it gradually fades from view as the 
extinction also grows without limit. Evidently, the atmospheric structure must 
be resolved to better than a millimetre if precise results are to be calculated near 
the top of a duct below eye level. 

Mirages and ducting: A constant lapse rate produces an erect but somewhat 
compressed image of the sky at the astronomical horizon. The air near the 
observer acts much like a prism, deviating the image of the setting Sun (for 
example) in proportion to the ray curvature. However, when the lapse rate 
changes with height — that is, when the temperature profile is curved — the 
refraction changes rapidly with apparent altitude. Above the astronomical 
horizon, where tan z varies relatively slowly along the ray, the refraction integral 
averages out the contributions from different layers so well that the refraction 
cannot change faster than the zenith distance. But below the horizon, where 
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rays can be horizontal, the perigee layer dominates the refraction, which can 
change very rapidly with altitude. In particular, if the lapse rate below eye level 
decreases rapidly with height, as at the base of a low-lying thermal inversion, or 
immediately above a warm surface, the refraction decreases with increasing 
zenith distance. When refraction decreases faster than zenith distance increases, 
we see objects that are actually higher in the sky as we look lower: images become 
inverted, and we have a mirage. Such mirages46 do not require ducting; they 
merely require rapid changes in lapse rate with height, so that the atmosphere 
acts like a positive, cylindrical lens, producing a real, inverted image of a zone 
of sky. The zigzag limb of the low Sun often displays a stack of thermal 
inversions below eye level; O'Connell 's book on the green flash5S shows many 
fine examples. If there is a duct below eye level, the image of the sky becomes 
discontinuous where the line of sight is tangent to the top of the duct. The 
refraction increases without limit just above this boundary, but is finite just 
below it. The resulting image discontinuities and inversions22 produce the 
'Chinese-lantern' effect on the setting Sun. O'Connell shows a few examples of 
such discontinuities, which he calls "surfaces of separation". 

Calculating refraction near the horizon: Because Lambert 's series expansion 
diverges more rapidly with increasing zenith distance, and becomes useless 
numerically well above the horizon, a different approach is required at low 
altitudes. The most useful one is that invented by Biot36, and independently 
rediscovered by Auer & Standish59 . It avoids the divergence of the integrand at 
the horizon (because of the t a n z factor) by changing the variable of integration 
from n to the local zenith distance z .This method works well so long as the ray 
curvature differs appreciably from the Earth's. However, if the ray curvature 
approaches the Earth 's , z remains nearly constant along the ray; the interval of 
z corresponding to some interval of height becomes vanishingly small, and the 
integrand must become enormous to keep the area under the curve finite. 
Mathematically, this is because the denominator of the transformed integrand 
is proportional to the difference of the curvatures. Computationally, the 
problem is numerical instability: the denominator is the small difference of two 
nearly-equal quantities, so the calculation is swamped by round-off error. It 
therefore becomes unusable when ducting occurs — as was already foreseen by 
Biot. 

Infinite refraction:rYYi\% 'corner case' (of horizontal rays with curvatures equal 
to the Earth's) is obviously intractable: it corresponds to rays that circle the 
Earth endlessly, giving infinite refraction. This situation was beautifully 
analyzed by Kummer 6 0 , who discovered that an infinite number of infinitely 
thin images of the whole sky are produced — if we neglect extinction. 

Refraction and extinction 

Laplace's extinction theorem: The relation between extinction and refraction 
was established by Laplace1 two centuries ago. His result is equation [8599] in 
Nathaniel Bowditch's admirable translation61 of the Mecanique Celeste; in 
Bowditch's words, it is just: "... the logarithm of the intensity of light, of any 
heavenly body, is proportional to its refraction, divided by the cosine of its 
apparent altitude." Or, remembering that cos a = s ins , we can say that the 
refraction r is proportional to the product M s ins , where M is the airmass. 

To see why this is so, consider that the differential of refraction is the element 
of path length ds times the component of the refractivity gradient normal to the 
ray, As the gradient is vertical, the projection factor is just s inz; and the 
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refractivity gradient is proportional to the density gradient, dpldh. So the 
refraction is 

dp 
~dh 

sin z ds. 

But the airmass is just proportional to the integral of the density itself: 

M oc p ds. 

We would have everything needed to obtain Laplace's theorem if dpldh in the 
refraction integral were just proportional to p in the airmass integral. In general, 
they are not proportional. But Laplace imposes a fairly mild condition: he 
assumes the atmosphere is isothermal, so the density decreases exponentially 
with height. And of course the derivative of an exponential is proportional to 
the exponential itself; so we have what we need. There is also the problem that 
sinz is not constant along the ray. However, it is nearly constant along the ray 
if the zenith distance is not too large, because z is nearly constant. And, near 
the horizon, sin z is nearly unity, even though z varies by a few degrees as the 
ray traverses the atmosphere. As a result, the variation of sinz is not a serious 
problem; as Laplace demonstrates, the theorem is a moderately good 
approximation. 

Although the real atmosphere is not isothermal, most of the refraction (and 
airmass) is contributed by the bottom few kilometres12, in which the 
temperature varies by only a few per cent. So Laplace's extinction theorem is 
really fairly accurate. As a trivial example, consider the simple approximations 
for the plane-parallel atmosphere: r ©= tan^r and M ~ secz. Their ratio is just 
sin 2, as expected. Laplace's result has also been verified for more realistic model 
atmospheres62. A handy corollary of Laplace's theorem is that near the horizon, 
where sinz ~ 1, the refraction is very nearly proportional to the airmass. 

Series expansions: Lambert's series-expansion method can also be applied to 
airmass calculations63. Apart from the sinz factor, the terms are similar; 
however, because airmass has the density where refraction has the density 
gradient, the moments that appear in the coefficients of the terms are all one 
order higher in the airmass series. In particular, the coefficients begin with the 
first moment, not the zeroth moment, so there is no term in the airmass series 
that is independent of atmospheric structure, and we have nothing comparable 
to Oriani's theorem. 

Who cares about extinction? Although refraction and extinction are intimately 
related, they have traditionally belonged to different fields. Refraction has been 
the concern of astrometrists; extinction, that of photometrists. However, 
refraction has to be taken into account in ground-based photometry — not only 
for telescope pointing, but because the blue image of a star lies above the red 
one, so that aperture errors and centring may differ, depending on the 
passband being measured. This is particularly a problem for the large-airmass 
observations needed to determine the extinction. Furthermore, it is the 
refracted and not the true zenith distance that is the independent variable in the 
airmass tables, so the wrong airmasses will be used if zenith distances calculated 
from times and positions are not corrected for refraction18. On the other hand, 
extinction is a problem for astrometry, because the refraction is wavelength-
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dependent; and the effective wavelength depends on atmospheric reddening, 
varying with zenith distance. Finally, the tropospheric corrections required in 
GPS calculations are more closely allied to airmass than to refraction. 
Consequently, all observers should understand both airmass and refraction. 

Discussion 

The physics of atmospheric refraction is simple. But it is obscured by the 
lengthy semi-convergent series expansions that were introduced by Lambert52. 
Because astronomers have concentrated on ridding observational data of the 
nuisance of atmospheric refraction, rather than regarding it as a subject to be 
understood in its own right, much effort has been mis-directed. For example, 
many people, including Simon Newcomb6, have worried that the poorly-
understood structure of the upper atmosphere was a major source of uncertainty 
in refraction tables; in fact12 it is quite unimportant. The 19th-century 
emphasis on analytical rather than numerical methods led to an emphasis on 
atmospheric models that made the series expansions tractable — even after 
Biot36 had shown that accurate numerical integrations require only modest 
computational effort. Most of the competing models were polytropes64 3 of 
various degrees. These all have a constant lapse rate, so they terminate with an 
absolute temperature of 0 K at a finite height — a feature that worried many 
workers. 

Cassini's homogeneous model can be regarded as a polytrope of index zero; 
the Simpson65-Bradley56-Meyer67 model has polytropic index one; and the 
isothermal model has an infinite polytropic index. The efforts of Laplace1 and 
Ivory4S>54 went into constructing a sort of interpolation or hybrid formula 
between these extremes. Because of the poorly-determined position of absolute 
zero on existing temperature scales, Ivory decided the best polytropic index (to 
put his result in modern terms) was 3 or 4. Later, Bauernfeind53 worked out the 
polytrope of index 5; and Radau2 gives results for 4, 5, and 6. These workers all 
struggled with the conflict between the small height of the polytropic model, 
which ends at (m + 1) H\im is the polytropic index, and the much greater height 
of the atmosphere inferred from meteors, aurorae, and twilight phenomena. 
Today, we understand that this is due to the isothermal stratosphere, which 
greatly extends the height of the upper atmosphere without12 affecting its 
refraction. Indeed, Ivory's model gradually tails off into a nearly-isothermal 
upper extension, which he recognized was poorly constrained by refraction data. 
Another problem these workers had was that the mean tropospheric lapse rate 
produces less refraction within 2° of the horizon than is observed. This, we now 
understand12, is due to the nocturnal thermal inversion, whose importance was 
first urged by Oppolzer68, but without success. 

If refraction corrections are needed for precise astrometric observations, 
Cassini's model is more than good enough12 — as, indeed, is suggested by 
Oriani's theorem37 '38. If the boundary layer were featureless, Biot's 
magnification theorem35'36 would suffice to relate the local lapse rate to the 
Sun's flattening at the horizon. If the details of refraction near the horizon are 
required, as in explaining sunset mirages22'24'45 and their associated green 
flashes69'58'70'71, one must take account of the complex thermal structure in the 
boundary layer. And because of the dispersion that causes green flashes, the 
atmospheric reddening, and hence the linkage between refraction, airmass, and 
effective wavelength of observation, must always be kept in mind. 
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'BEST TIME' 
FOR THE FIRST VISIBILITY OF THE LUNAR CRESCENT 

By A. H. Sultan 
Physics Department, Sana'a University, Yemen 

The concept of 'best time' for the first visibility of the thin 
crescent moon developed by Bruin, Schaefer, andYallop did not 
consider the elevation of the site of observation. Our first 
estimation — after analyzing some documented observations — 
is that the 'best time' is directly proportional to site elevation and 
inversely proportional to the Moon's altitude. For moderate-
elevation sites (less than iooo m) the crescent could first be seen 
shortly after sunset. However, for higher elevations (around 2000 m) 
the crescent could first be seen shortly before moonset. 

By using our first-visibility photometric model, the extensive 
data of Blackwell's 1946 experiment, and the measured twilight-
sky brightness of our site (1990 m), we find that the optimum 
lunar altitude for first visibility is about 2 degrees, no matter what 
the lunar elongation is. 
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